

वार्षिक प्रतिवेदन 2023

भा.कृ.अनु.प.- भारतीय सोयाबीन अनुसन्धान संस्थान खंडवा रोड, इंदौर (मध्य प्रदेश)

दूरभाष: 0731-2476188, 2437951

ईमेल: director.soybean@icar.gov.in, वेबसाइट: iisrindore.icar.gov.in

प्रकाशन

डॉ. कुंवर हरेन्द्र सिंह निदेशक भा.कृ.अनु.प.-भारतीय सोयाबीन अनुसन्धान संस्थान , खंडवा रोड इंदौर

सम्पादन एवं हिंदी अनुवादन

डॉ. पुनम कुचलान

डॉ. मृणाल कुचलान

श्री आई.आर. खान

मुख्य पृष्ठ डिज़ाइन

पूर्णिमा लांडे

सन्दर्भ:

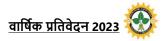
वार्षिक प्रतिवेदन 2023 भा.कृ.अनु.प.-भारतीय सोयाबीन अनुसन्धान संस्थान , खंडवा रोड इंदौर, मध्य प्रदेश, (भारत)

प्रस्तावना

सोयाबीन, देश में कुल तिलहन और खाद्य तेल उत्पादन में एक प्रमुख योगदानकर्ता के रूप में, खाद्य तेल आयात को कम करने और कच्चे माल प्रदान करके विभिन्न उद्योगों का समर्थन करने में महत्वपूर्ण भूमिका निभाता है। उल्लेखनीय है कि 2022 के दौरान भारत में रिकॉर्ड 14.9 मिलियन टन सोयाबीन का उत्पादन किया गया था। हालांकि, 2023-24 फसल को परिवर्तनीय मौसम की स्थिति का सामना करना पड़ा, जुलाई में लगातार बारिश के साथ प्रारंभिक वृद्धि और अगस्त 2023 में लंबे समय तक शुष्क माह ने उत्पादन को और प्रभावित किया। वर्तमान और भविष्य की मांग को पूरा करने के लिए, सोयाबीन उत्पादकता में काफी वृद्धि करने की आवश्यकता है। जलवायु परिवर्तनशीलता से संबंधित जैविक और अजैविक तनाव की चुनौतियों का सामना करना और सोयाबीन फसल उत्पादकता को बढ़ाना सोयाबीन शोधकर्ताओं के लिए प्रमुख चिंताएं हैं। भा.कृ.अनु.प.-भारतीय सोयाबीन अनुसंधान संस्थान उच्च उत्पादन वाली, लक्षण-विशिष्ट किस्मों को विकसित करके इन

चुनौतियों से निपटने के लिए सक्रिय रूप से काम कर रहा है जो जैविक और अजैविक तनाव के प्रति सहिष्णु हैं। संस्थान का उद्देश्य गुणवत्तापूर्ण बीज उत्पादन के माध्यम से नई जारी की गई किस्मों की खेती को बढ़ाकर और टिकाऊ फसल उत्पादन प्रणाली विकसित करके इसे प्राप्त करना है। 2023 में, तीन सोयाबीन किस्मों: एनआरसी 165, एनआरसी 181 और एनआरसी 188 को खेती के लिए जारी करने हेतु पहचान की गई, जबकि पांच किस्मों; एनआरसी 131, एनआरसी 136, एनआरसी 150, एनआरसी 152, और एनआरसी 157 को खेती के लिए अधिसूचित किया गया था। विशेष रूप से, एनआरसी 188 मध्य भारत के लिए पहचानी जाने वाली पहली सब्जी सोयाबीन किस्म है। अच्छी अंकुरण और मीठे स्वाद के साथ सब्जी प्रकार की सोयाबीन की नई प्रजनन रेखाओं की पहचान की गई। पोड इनोक्यूलेशन विधि का उपयोग करके एन्प्राक्नोज रोग-प्रतिरोधी जर्मप्लाज्म की पहचान की गई थी, और स्पोडोप्टेरा के खिलाफ एंटीक्सेनोसिस दिखाने वाले जीनोटाइप की भी पहचान की गई थी। भा.कृ.अनु.प -एनबीपीजीआर के माध्यम से यूएसडीए से ग्लाइसिन मैक्स और ग्लाइसिन सोजा की नई जर्मप्लाज्म परिग्रहण प्राप्त की गई थी।जीनोम-वाइड एसोसिएशन अध्ययनों ने एंथ्रेक्नोज प्रतिरोध और रूट लक्षणों से जुडे महत्वपूर्ण जीनोमिक लोसाई की पहचान की है।पीले मोजेक रोग से प्रतिरोधी और उच्च तेल सामग्री वाले जीनोटाइप को सफलतापूर्वक तैयार किया गया है।संस्थान ने आर.ए.बी. रोग के कारण राइजोक्टोनिया सोलानी आइसोलेट्स की विशेषता में महत्वपूर्ण प्रगति की अवशेष प्रतिधारण के साथ परमानेंट ब्रांड बीएड फरो के इस्तेमाल से सोयाबीन की उपज में वृद्धी दर्ज की गई तथा इस तरह सोयाबीन आधारित कृषि से आर्थिक लाभ भी दर्ज की गई। सोयाबीन और गेहूं की बीज उत्पादन में उल्लेखनीय सुधार के लिए एक माइक्रोबियल कंसोर्टियम (बैसिलस आर्यभट्टाई + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ) की पहचान की गई है।एएम इनोक्यूलेशन के साथ फाइटोहार्मीन टाया 2पीपीएम के उपयोग से उच्च नोड्यूल बायोमास, नोड्यूल्स में लेघमोग्लोबिन सामग्री और सोयाबीन बीज उत्पादन दिखाई गई।2023 में, संस्थान ने प्राकृतिक खेती, जी. सोजा से उन्नत लक्षणों को प्राप्त करने के लिए पूर्व-प्रजनन, सब्जी प्रकार के सोयाबीन के लिए प्रजनन, जैविक तनाव और गुणवत्ता लक्षणों के लिए जीनोम एडिटिंग और रबी और गर्मियों के मौसम के दौरान दो अतिरिक्त पीढियों को बढ़ाकर तेजगति प्रजनन सहित विभिन्न पहलों को अपनाया।

मैं सोयाबीन अनुसंधान और विकास में मार्गदर्शन और निरंतर समर्थन के लिए डॉ. हिमांशु पाठक, सचिव, डेयर और महानिदेशक, भा.कृ.अनु.प का आभार व्यक्त करता हूं। मैं संस्थान में विभिन्न अनुसंधान गतिविधियों की योजना बनाने और उन्हें क्रियान्वित करने में उनके निरंतर परामर्श, समर्थन और मार्गदर्शन के लिए डॉ. टी.आर. शर्मा, उप महानिदेशक (फसल विज्ञान) के प्रति अपनी गहरी कृतज्ञता व्यक्त करता हूँ। रणनीतिक अनुसंधान योजना में उनके अमूल्य मार्गदर्शन के लिए आरएसी के अध्यक्ष और सदस्यों की मेरी हार्दिक सराहना है। संस्थान की प्रगति में उनके बहुमूल्य योगदान के लिए डॉ. संजीव गुप्ता, एडीजी (तिलहन और दलहन), भा.कृ.अनु.प, नई दिल्ली को विशेष धन्यवाद दिया जाता है। इसके अतिरिक्त, मैं इस रिपोर्ट को व्यापक और सूचनात्मक बनाने में उनके मेहनती प्रयासों के लिए संपादकीय समिति को आभार करना चाहूंगा। मुझे विश्वास है कि यह वार्षिक रिपोर्ट सोयाबीन अनुसंधान और विकास को बढ़ावा देने में शामिल शोधकर्ताओं, नीति निर्माताओं, किसानों, उद्योगों और विकास अधिकारियों के लिए मूल्यवान साबित होगी।


(के. एच. सिंह) निदेशक

आईआईएसआर, इंदौर 1 फरवरी, 2024

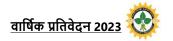
अनुक्रमणिका

क्र. सं	ब्यौरा	पृष्ठ संख्या
1	कार्यकारी सारांश	1-2
2	परिचय	3-5
3	अनुसंधान उपलब्धियां	
3.1	आनुवंशिक संसाधन: संरक्षण, चरित्रीकरण और उपयोग	6-9
3.2	प्रारंभिक परिपक्वता, उच्च उपज, वृहत नुकूलन क्षमता और खाद्य ग्रेड विशेषताओं के लिए प्रजनन	10-17
3.3	अजैविक तनाव सहनशीलता के लिए प्रजनन	18-26
3.4	जैव तनावों का प्रबंधन	27-32
3.5	बीज गुणवत्ता संशोधन एवं उत्पादन	33-37
3.6	फसल उत्पादन प्रौद्योगिकियां	38-46
4	प्रौद्योगिकी का विस्तार	47-51
5	सोयाबीन वार्षिक समूह बैठक पर एआईसीआरपी	52-54
6	आयोजन एवं बैठक	55-62
7	संस्थान की अनुसंधान परियोजनाएं	63-65
8	प्रकाशन, पेटेंट, पुरस्कार और मान्यता	66-75
9	लिंकेज और सहयोग	76
10	राजभाषा-क्रियान्वयन	77-80
11	महत्वपूर्ण समितियां	81-86
12	कार्मिक	87-90

कार्यकारी सारांश

- सोयाबीन की तीन किस्में; एनआरसी 165, एनआरसी 181 और एनआरसी 188 को एआईसीआरपी सोयाबीन की वार्षिक समूह बैठक के दौरान जारी करने के लिए पहचान की गई। पांच किस्मों; एनआरसी 131, एनआरसी 136, एनआरसी 150, एनआरसी 152 और एनआरसी 157 को खेती के लिए अधिसूचित किया गया। दो लंबी किशोरावस्था किस्मों एनआरसी 157 और एनआरसी 131, और एक सूखा प्रतिरोधी किस्म एनआरसी 136 को मध्य प्रदेश राज्य के लिए अधिसूचित किया गया। एनआरसी 165, एक शीघ्र परिपक्व होने वाली किस्म की मध्य क्षेत्र में जारी करने के लिए पहचान की गई। प्रविष्टि एनआरसी 262 ने एआईसीआरपी परीक्षणों में आईवीटी (कम अवधि) में सर्वोत्तम चेक पर 23% उत्पादन लाभ दर्ज किया और एवीटी में पदोन्नत किया गया।
- एन.आर.सी. 181, के.टी.आई. और लिपोक्सिनेज 2 से मुक्त एक शीघ्र परिपक्वता वाली किस्म को मध्य क्षेत्र में खेती के लिए जारी किया गया। मध्य भारत की पहली सब्जी सोयाबीन किस्म, एन.आर.सी. 188, मध्य क्षेत्र में खेती के लिए जारी की गई। एन.आर.सी. 197, एक शीघ्र परिपक्वता एवं के.टी.आई. मुक्त जीनोटाइप को नॉर्थ हिल जोन में ए.वी.टी. ॥ में पदोन्नत किया गया था। एन.आर.सी. 258, एक उच्च तेल वाली जीनोटाइप को मध्य क्षेत्र में ए.वी.टी. । में पदोन्नत किया गया था।
- सयुंक्त राज्य अमेरिका के कृषि विभाग से प्राप्त ग्लाइसिन मैक्स की 475 नये जर्मप्लाज्म परिग्रहण और ग्लाइसिन सोजा की 168 जर्मप्लाज्म परिग्रहण को संगरोध से मंजूरी के बाद आईसीएआर-एनबीपीजीआर से प्राप्त की गईं है। संस्थान के मध्यावधि भंडारण में कुल 6221 जर्मप्लाज्म परिग्रहण का रखरखाव किया जा रहा है। आई.सी.ए.आर-आई.आई.एस.आर. इंदौर में उपलब्ध सोयाबीन परिग्रहण की स्थिति के लिए जर्मप्लाज्म स्थिति सूचना प्रणाली का प्रारंभिक प्रोटोटाइप विकसित किया गया है। संस्थान द्वारा ए.आई.सी.आर.पी.एस. के 25 संस्थानों और 7 केंद्रों को कुल 3937 जर्मप्लाज्म परिग्रहण वितरित किए गए।
- एस.एल. 958 (ई1, ई2, ई3, ई4) की चौबीस निकट आइसोजेनिक लाइनों (NILs) का मूल्यांकन 6 चेक के साथ किया गया। चार NILs अर्थात एन.आर.सी. 225, एन.आर.सी. 230 और एन.आर.सी. 249 ने सर्वोत्तम चेक (जे.एस. 20-34) से 15-49% तक अधिक अनाज प्राप्त किया। अनुक्रमण द्वारा

- लंबे किशोरअवस्था एलील जे की उपस्थिति के लिए जर्मप्लाज्म परिग्रहण वी 61 की पृष्टि की गई, और मार्कर की सहायता से चयन के लिए पी.सी.आर. आधारित मार्कर विकसित किए गए। गुणात्मक और मात्रात्मक लक्षणों के लिए प्रक्षेत्र की स्थिति में पच्चीस ग्लाइसीन सोजा परिग्रहण की विशेषता जांची गई।
- अट्ठाईस 4-वे क्रॉस से प्राप्त उन्नत प्रजनन आबादी (एफ़ 7: 124 लाइनें) का प्रारंभिक रूप से उत्पादन के साथ-साथ सुखा सहनशीलता गुणों के लिए मूल्यांकन किया गया। तीन पंक्तियाँ अर्थात. एम-51-2-6, एम-22-26 और एम-54-4ए-8 ने क्रमशः 55.2, 45.1 और 38.8 प्रतिशत स्टेम रिजर्व जुटाव के संदर्भ में उच्च शुष्कन सहनशीलता दिखाई। एन.आर.सी. 190, क्रॉस जे.एस. 97-52 x जे.एस. 355 से प्राप्त एक उच्च उत्पादन वाली सूखा सहिष्णु प्रविष्टि, उत्तर पूर्वी पहाड़ी क्षेत्र में आई.वी.टी.-2023 परीक्षण में लगातार तीसरे वर्ष दोहराई गई है।
- हाइड्रोपोनिक कल्चर का उपयोग करके तीन सप्ताह के चरण में विभिन्न जड़ लक्षणों के लिए 234 परिग्रहणों का एक जर्मप्लाज्म सेट फेनोटाइप किया गया था। कुल 234 जीनोटाइप में जड़ लक्षण फेनोटाइपिंग डेटा के साथ एस.एन.पी. मार्करों के जीनोम वाइड एसोसिएशन विश्लेषण ने प्राथमिक जड़ लंबाई, कुल जड़ लंबाई, जड़ मात्रा, सतह क्षेत्र और जड़ युक्तियों से जुड़े महत्वपूर्ण की पहचान की। सात SOR1-जैसे जीनों के जीन अभिव्यक्ति विश्लेषण से आठ विपरीत जीनोटाइप में दो जीनों, Glyma.01g097900 और Glyma.06g091651 की अंतर अभिव्यक्ति का पता चला।
- एम.ए.एस. का उपयोग करके विकसित पीला मोज़ेक रोग प्रतिरोधी और उच्च तेल प्रविष्टि एन.आर.सी. 259 को मध्य क्षेत्र में ए.वी.टी. 1 में पदोन्नत किया गया है। पॉड-इनोक्यूलेशन विधि का उपयोग करके मुल्यांकन के अनुसार एन्थ्रेक्नोज (सबसे विषैले आइसोलेट- MHOW आइसोलेट के खिलाफ) के लिए सात जीनोटाइप अर्थात एन.आर.सी. 130, एन.बी. 208, ए.जी.एस. 163 ए, एन.आर.सी. 202, एन.आर.सी. 152, ई.सी. 34106 और सी.ए.टी. 1504 प्रतिरोधी पाए गए। जे.एस. 335 की पृष्ठभूमि में दाता के रूप में ग्लाइसिन सोजा का उपयोग करके विकसित जीनोटाइप, एन.आर.सी.एस.एल. 8 (आई.एन.जी.आर. 23101), ने कई प्रमुख बीमारियों के खिलाफ प्रतिरोधी प्रतिक्रिया दर्शाई. जिसको आई.सी.ए.आर-एन.बी.पी.जी.आर, नई दिल्ली में पंजीकृत किया गया।



- भारत के विभिन्न सोयाबीन उत्पादक क्षेत्रों राइजोक्टोनिया एरियल झुलसा रोग पैदा करने वाले कुल 42 राइजोक्टोनिया सोलानी के आइसोलेट्स एकत्र किए गए। रेडियल वृद्धि के आधार पर, आर.एस. 3 (सीहोर), आर.एस. 34 (बिंदुखट्टा), आर.एस. 35 (कमलावागांजा) तेजी से बढ़ने वाले आइसोलेटस थे, जबिक आर.एस. 21 (होशंगाबाद), आर.एस. 22 (खरगोन) और आर.एस. 39 धीमी गति से बढ़ने वाले आइसोलेटस पाए गए।
- स्पोडोप्टेरा लिट्रा के खिलाफ काले सोयाबीन जीनोटाइप ई.सी. 1039028 ने मजबूत एंटीक्सेनोसिस एवं 4 जीनोटाइप्स, जे.एस. (एस.एच.) 131, 589407, ए.जी.एस. 160 और आई.सी. 24997, ने मध्यम एंटीक्सेनोसिस प्रदर्शित किया। स्टेम फ्लाई के 50 नर और 50 मादा दोनों के लिए अलग-अलग शारीरिक वाष्पशील पदार्थों को डायथाइल ईथर का उपयोग करके एकत्र किया गया। पांच जीनोटाइप जैसे कि, एफ़4P21, F3P18, CAT2503, JS 9560 और जे.एस. 335 के पत्ती वाष्पशील पदार्थों का उपयोग करके ऑलफैक्टोमीटर बायोसे. जी.सी.-एम.एस. विश्लेषण इलेक्ट्रोफिजियोलॉजी अध्ययन किया गया।
- अवशेष प्रतिधारण के साथ स्थायी चौड़ी नाली से खरीफ (सोयाबीन में 17.5% अधिक उपज) और रबी फसलों की उत्पादन और अर्थव्यवस्था में सुधार पाया गया। सोयाबीन आधारित फसल प्रणाली के तहत अवशेष प्रतिधारण के बिना जुताई से पारंपरिक की तुलना में गेहूं में 12.4% अधिक उपज, आलू में 38.8%, आलू के बाद गेहूं में 44.6% और चने में 16.6% अधिक उत्पादन प्राप्त हुई। सोयाबीन आधारित फसल प्रणालियों के तहत प्राकृतिक कृषि पद्धतियों को मानकीकृत करने के लिए प्रयोग शुरू किए गए हैं।
- माइक्रोबियल कंसोर्टिया (*बैसिलस आर्यभट्टई* ब्रैडिरहिज़ोबियम लियोनिंगेंस +ए.एम.एफ.) के उपयोग से मिट्टी में पोषक तत्वों की मात्रा और उपभोग

- में सुधार करके सोयाबीन और गेहूं की बीज उत्पादन में काफी सुधार पाया गया। ए.एम.एफ. बी. आर्बोरिस + ब्र. (20.51मिलीग्राम-1 पौधा) के साथ बीज टीकाकरण ने ए.एम.एफ. + बी.आर्बोरिस + ट्राइया (18.77 मिलीग्राम-1 पौधा) पौधों की तुलना में अधिक जड़ बायोमास का उत्पादन किया। एएम टीकाकरण के साथ फाइटोहोर्मोन्स ट्राइया 2पीपीएम में नोड्यूल बायोमास, नोड्यूल्स में लेगहीमोग्लोबिन और सोयाबीन बीज उत्पादन में काफी अधिक पाया गया।
- विभिन्न किस्मों जैसे एन.आर.सी. 142, एन.आर.सी. 138, एन.आर.सी. 130. एन.आर.सी. एन.आर.सी. 128, 136. एन.आर.सी. 86 और आर.वी.एस. 24 के सोयाबीन ब्रीडर बीज का उत्पादन ए.आई.सी.आर.पी. बीज (फसल) के तहत किया गया जिससे 620 क्विंटल ब्रीडर बीज का उत्पादन हुआ। इंदौर और उज्जैन के प्रगतिशील किसानों के सहयोग से बीज हब परियोजना एन.आर.सी. के तहत एन.आर.सी. 130, एन.आर.सी. 138 और जे.एस. 20-69 के लिए फाउंडेशन, प्रमाणित और टीएल श्रेणियों का बीज उत्पादन शुरू किया गया और कल 773 क्विंटल बीज का उत्पादन हुआ।
- आई.सी.टी. पहल के तहत, संस्थान छह सोशल मीडिया का उपयोग कर रहा है। सोयाबीन उत्पादन और उपयोग के विभिन्न पहलुओं पर सोशल मीडिया पर कुल 214 वीडियो अपलोड किए गए। 'राष्ट्रीय किसान दिवस' के अवसर पर 'सोयाबीन बीज दिवस' का आयोजन किया गया. जिसमें 1200 से अधिक किसानों ने भाग लिया और नई किस्मों के 1300 बीज पैकेट वितरित किए गए। संस्थान ने अनुसूचित जाति उपयोजना (एस.सी.एस.पी.) के तहत किसान प्रशिक्षण और इनपुट वितरण कार्यक्रम आयोजित किए जिसमे मध्य प्रदेश के कुल 2375 किसान लाभान्वित हुए।

2. परिचय

भारतीय कृषि अनुसंधान परिषद (आईसीएआर) ने मध्य प्रदेश राज्य के इंदौर में वर्ष 1987 में भा.कृ.अनू.प -भारतीय सोयाबीन अनुसंधान संस्थान (आईआईएसआर) की स्थापना की है ताकि बुनियादी जानकारी और प्रजनन सामग्री के साथ सोयाबीन उत्पादन प्रणालियों का समर्थन करने के लिए अनुसंधान किया जा सके। केंद्रीकृत सोयाबीन (एआईसीआरपीएस), सोयाबीन ब्रीडर सीड उत्पादन (एसबीएसपी) पर अखिल भारतीय समन्वित अनुसंधान परियोजना की समन्वित इकाई और सोयाबीन जर्मप्लाज्म के लिए राष्ट्रीय सक्रिय जर्मप्लाज्म साइट (एनएजीएस) भी आईसीएआर-आईआईएसआर, इंदौर में स्थित हैं। आईसीएआर-आईआईएसआर की अनुसंधान योजना और नीतियां अनुसंधान सलाहकार समिति (आरएसी), पंचवार्षिक समीक्षा टीम (क्यूआरटी) और संस्थान अनुसंधान परिषद (आईआरसी) की सिफारिशों द्वारा निर्देशित हैं। संस्थान प्रबंधन समिति (आईएमसी) अपनी योजनाओं और कार्यक्रमों के कार्यान्वयन का समर्थन करती है। संस्थान ने सोयाबीन खाद्य प्रसंस्करण और उत्पादन प्रौद्योगिकियों के क्षेत्र में स्टार्ट-अप के प्रशिक्षण और समर्थन के लिए एक एग्रीबिजनेस इनक्यूबेशन सेंटर (एबीआई) की भी स्थापना की थी।

प्राकृतिक भ्र्गोल

भा.कृ.अनु.प - भारतीय सोयाबीन अनुसंधान संस्थान परिसर मध्य प्रदेश राज्य के इंदौर जिले के पिपल्याराव गांव में स्थित है, जो मालवा पठार की विध्यांचल रेंज में 220 4'37"N उ. अक्षांश और 750 52'7"E देशांतर पर स्थित है। यह औसत समुद्र तल से 550 मीटर की ऊंचाई पर स्थित है। संस्थान का क्षेत्रफल 58.05 हेक्टेयर है जिसमें अनुसंधान और बीज उत्पादन के लिए 42.7 हेक्टेयर कृषि योग्य भूमि है। भा.कृ.अनु.प - भारतीय सोयाबीन अनुसंधान संस्थान देवी अहिल्या बाई होल्कर अंतर्राष्ट्रीय हवाई अड्डा, इंदौर से 12 किमी और रेलवे स्टेशन, इंदौर से 6 किमी की दूरी पर स्थित है।

मृदा

भा.कृ.अनु.प - भारतीय सोयाबीन अनुसंधान संस्थान अनुसंधान फार्म की मिट्टी गहरी काली कपास मिट्टी है जिसमें पीएच 7.6 से 8.1 (बेसिक/क्षारीय भूमि), कार्बनिक कार्बन, उपलब्ध फॉस्फोरस में कम से मध्यम और पोटेशियम में उच्च है। टैक्सोनोमिक रूप से इसे टाइपिक क्रोमस्टर्ट्स और फाइन क्ले लोम, लिथिक वर्टिक यूस्टोचरैप्ट्स के मॉन्टमोरिलोनाइटिक परिवार के ठीक, मॉन्टोरोनाइटिक, हाइपरथर्मिक परिवार के रूप में वर्गीकृत किया गया है। जलवाय मध्य प्रदेश के मालवा पठार की जलवाय 150-180 दिनों की बढ़ती अवधि के साथ अर्ध-शुष्क है। इस प्रकार, इस क्षेत्र की जलवायु 3 अलग-अलग कृषि मौसमों की विशेषता है। ये हैं: (अ) बरसात का मौसम, जिसे मानसून या खरीफ के रूप में भी जाना जाता है, आमतौर पर जून के मध्य से शुरू होता है और अक्टूबर की शुरुआत तक फैला होता है। आम तौर पर, मानसून की अवधि लगभग 98 दिन होती है जिसमें लगभग 800 मिमी औसत वार्षिक वर्षा होती है और इस मौसम के दौरान वर्षा आधारित फसल के रूप में सोयाबीन उगाया जाता है। (ब) बारिश के बाद का मौसम जो अक्टूबर के मध्य से मार्च तक चलता है, जिसे रबी के रूप में भी जाना जाता है, शुष्क और ठंडा है और, (स) गर्म और शुष्क मौसम, जो फरवरी में शुरू होता है और अप्रैल तक चलता है जिसे जायद या ग्रीष्म/वसंत कहा जाता है और इस मौसम के दौरान उगाई जाने वाली किसी भी फसल के लिए सिंचाई की आवश्यकता होती है।

अतीत की उपलब्धियां

संस्थान की प्रमुख उपलब्धियों में सोयाबीन जर्मप्लाज्म के एक विशाल संग्रह का रखरखाव शामिल है जिसमें विदेशी. स्वदेशी, प्रजनन लाईन और जंगली प्रजातियां शामिल हैं। वर्तमान में, भा.कृ.अनु.प - भारतीय सोयाबीन अनुसंधान संस्थान में 6221 जर्मप्लाज्म परिग्रहण सम्भालकर रखी गई है। फोटोपीरियड असंवेदनशीलता, लॉन्ग जुमेनाइल , सूखा और जलभराव सहिष्णुता, गर्मी तनाव सहिष्णुता और चारकोल सडन, एन्थ्रेक्नोज, रस्ट और पीले मोज़ेक और कुछ कीड़ों के प्रतिरोध जैसे विभिन्न लक्षणों के लिए कई आनुवंशिक संसाधनों की पहचान की गई है। विभिन्न जैविक और अजैविक तनाव के प्रतिरोध वाली बीज उच्च उत्पादन देने वाली किस्मों को संस्थान द्वारा संभालकर रखा गया है और खाद्य ग्रेड पात्रों और देश के विभिन्न कृषि-पारिस्थितिक क्षेत्रों में खेती के लिए जारी किया गया है। देश में पहली केटीआई मुक्त जीनोटाइप , एनआरसी 127 को मध्य क्षेत्र में खेती के लिए जारी किया गया है। केटीआई और

लिपोक्सिजेनेज 2 से मुक्त एक उच्च उत्पादन वाली किस्म एनआरसी 142 को मध्य और दक्षिणी क्षेत्र के लिए जारी किया गया है। पूर्वी और दक्षिणी क्षेत्र में खेती के लिए पहली उच्च ओलिक एसिड किस्म एनआरसी

147 जारी की गई है। चार जर्मप्लाज्म परिग्रहण ईसी 390977, ईसी 34101, जेएस 20-34 और एमएसीएस 330 में फोटोपीरियोडिक जीन और प्रारंभिक परिपक्कता लक्षण हैं, एन्प्रेक्नोज प्रतिरोध के लिए ईसी, 34372, एजीएस 25 में लॉन्ग जुमेनाइल लक्षण हैं और जल भराव प्रतिरोधी लक्षण वाले जेएस 20-38 को आईसीएआर-एनबीपीजीआर, नई दिल्ली में पंजीकृत किया गया है। मॉलिक्यूलर मार्करों की पहचान परिपक्कता, 100 बीज वजन और पीले मोज़ेक रोग प्रतिरोध लक्षणों के लिए की गई है।

फसल उत्पादन के क्षेत्र में, इन –सीटू नमी संरक्षण प्रौद्योगिकी और सोयाबीन-आधारित फसल प्रणाली (बीबीएफ, एफआईआरबीएस, आर एंड एफ, सबसोइलर) के लिए संबंधित मशीनीकरण को विकसित और व्यावसायीकरण किया गया है। सोयाबीन + गन्ना इंटरक्रॉपिंग के तहत उपयुक्त खेती के साथ रेमुनेरेटिव सोयाबीन आधारित इंटरक्रॉपिंग सिस्टम (सोयाबीन + अरहर, सोयाबीन + मक्का और सोयाबीन + गन्ना) की पहचान की गई। सोयाबीन आधारित फसल प्रणाली के लिए एकीकृत पोषक तत्व और खरपतवार प्रबंधन विकसित किया गया है। जिंक आयरन घुलनशील बैक्टीरिया और देशी राइजोबिया सहित मृदा स्वास्थ्य बढाने वाले रोगाणुओं की पहचान की गई है। सोयाबीन में सूखे के तनाव को कम करने के लिए थायोयूरिया के छिडकाव के फोलियर आवेदन की सिफारिश की गई थी। सोयाबीन में नाइट्रोजन और फॉस्फोरस उर्वरकों के 25% को बचाने के लिए माइक्रोबियल कंसोर्टिया (ब्रेडिराइजोबियम डेकिंजेस + बैसिलस आर्यमट्टी) की पहचान की गई थी।

पौध संरक्षण के क्षेत्र में प्रमुख सोयाबीन कीटों के लिए एकीकृत प्रबंधन कार्यक्रम तैयार किया गया है। सोयाबीन में रस्ट की बीमारी के महामारी विज्ञान पर अध्ययनों से पता चला है कि दक्षिण भारत के लिए रस्ट इनोकुलम का स्रोत कृष्ण घाटी में है। महाराष्ट्र और कर्नाटक राज्यों के रस्ट संवेदनशील जिलों में रस्ट प्रतिरोधी किस्मों को अपनाने के आर्थिक लाभ का अनुमान लगाया गया था, जिससे पता चला कि रस्ट प्रतिरोधी किस्मों को व्यापक रूप से अपनाने से इस क्षेत्र में कृषि आय और फसल स्थिरीकरण में महत्वपूर्ण योगदान मिला।

एआईसीआरपीएस के लिए किस्म और रोग पहचान और डेटा प्रबंधन प्रणालियों के लिए वेब आधारित विशेषज्ञ प्रणाली विकसित की गई है। सोयाबीन ज्ञान - संस्थान द्वारा विकसित सोयाबीन किसानों के लिए एक मोबाइल ऐप जो खेती के विभिन्न पहलुओं पर जानकारी प्रदान करता है जैसे, कृषि संबंधी पैकेज, कीट और रोग प्रबंधन आदि यह उपयुक्त किस्मों के चयन; बीज उपचार, बीज दर और बीज भंडारण के बारे में भी जानकारी देता है।

इस तरह से संस्थान 36 वर्षों से सोयाबीन के रकबे और उत्पादन में तेजी से वृद्धि के लिए एक उत्प्रेरक बल के रूप में उभरा है। यह देश के विभिन्न क्षेत्रों में सोयाबीन की खेती को स्थिरता प्रदान करने में भी सहायक रहा है।

अधिदेश

अनुसंधान को आगे बढ़ाने, दिशा देने और उत्पादन प्रणालियों के अनुसंधान का समर्थन करने के लिए, निम्नलिखित जनादेश निर्धारित किए गए हैं:

- सोयाबीन की उत्पादकता एवं गुणवत्ता में सुधार के लिए अनुकूल बुनयादी एवं रणनीतिक अनुसन्धान करना।
- सोयाबीन के उत्पादन को बढ़ाने के लिए उन्नत तकनीकी की सूचना, ज्ञान एवं अनुवांशिक सामग्री की व्यवस्था प्रदान करना।
- क्षेत्र विषेश किस्मों और प्रोद्योगिकी के विकास के लिए प्रोद्योगिक अनुसन्धान का समन्वय करना |
- प्रौद्योगिकी का प्रसार और क्षमता निर्माण करना |

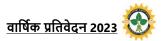
संगठनात्मक व्यवस्था

संस्थान के कुशल कामकाज के लिए और अधिदेश और उद्देश्यों को प्राप्त करने के लिए, संस्थान के संगठनात्मक पैटर्न को विकसित किया गया है और नीचे दर्शाया गया है:

स्टाफ और बजट

31 दिसंबर 2023 को आईसीएआर-आईआईएसआर की कुल स्वीकृत स्टाफ स्थिति 101 है जिसमें 34 वैज्ञानिक, 22 तकनीकी, 17 प्रशासनिक और 27 सहायक कर्मचारी पद शामिल हैं। जिनमें से 70 31 दिसंबर 2023 तक की स्थिति में हैं। 2022-2023 के दौरान बजट और व्यय, और 2023-24 का बजट नीचे दिया गया है।

2022-2023 के लिए आईसीएआर-आईआईएसआर का बजट और व्यय (लाख रुपये में)


मद	आर.ई .	वास्तविक व्यय
वेतन और भत्तों में सहायता अनुदान	1270.08	1270.08
पूंजी में सहायता अनुदान	72	72
सामान्य मद में सहायता अनुदान	325	324.74
पेंशन और सेवानिवृत्ति लाभ	235.42	235.42
उत्तर	30	30
जनजातीय उपयोजना	24	24
अनुसूचित जनजाति उपयोजना	60	60
कुल	2016.50	2016.24
राजस्व उपार्जन	65.38	-

2023-2024 के लिए आईसीएआर-आईआईएसआर का बजट (लाख रुपये में)

मद	आरई
वेतन और भत्तों में सहायता अनुदान	1300
पूंजी में सहायता अनुदान	150
सामान्य मद में सहायता अनुदान	580
पेंशन और सेवानिवृत्ति लाभ	171
उत्तर पूर्वी घाटी क्षेत्र के लिए मद	75
जनजातीय उपयोजना	28
अनुसूचित जनजाति उपयोजना	87
कुल योग	2391

1. अनुसंधान उपलब्धियां

1 आनुवंशिक संसाधन: संरक्षण, अंशांकन और उपयोग

NRCS1.1/87: सोयाबीन जर्मप्लाज्म का संवर्धन, प्रबंधन और दस्तावेजीकरण

पीआई: संजय गुप्ता, को-पीआई: वंगला राजेश, गिरिराज कुमावत, ज्ञानेश के. सतपुते, लोकेश कुमार मीणा. सविता कोहले और राम मनोहर पटेल

जर्मप्लाज्म अधिग्रहण और रखरखाव

आईसीएआर-एनबीपीजीआर, नई दिल्ली द्वारा एक सौ अड़सठ ग्लाइसिन सोजा की पहुंच को मंजूरी दी गई है। यूएसडीए से नव अर्जित दो सौ पचास अभिगमों को एनबीपीजीआर के दीर्घकालिक भंडारण (एलटीएस) में जमा किया गया था। एनबीपीजीआर के मार्गदर्शन में यूएसडीए से आयातित सात सौ उनतालीस किस्में आईसीएआर-आईआईएसआर में कारंटाइन में हैं। आईआईएसआर, इंदौर और यूएएस बेंगलुरु में कारंटाइन किए गए पांच सौ पचहत्तर नए एक्सेशन गुणण किए जा रहे हैं। आईसीएआर-आईआईएसआर इंदौर के मध्याविध भंडारण में कुल 6221 जर्मप्लाज्म संरक्षित की जा रही है।

जर्मप्लाज्म मूल्यांकन

भारत में 7 स्थानों पर जीडब्ल्यूएएस पैनल (322 परिग्रहण) के बहु-स्थान मूल्यांकन के तहत, दूसरे वर्ष के लिए इंदौर स्थान पर मूल्यांकन किया गया था। शीर्ष प्रदर्शन करने वाली परिग्रहण का औसत सीमा और नाम तालिका 3.1.1 में दिया गया

तालिका 3.1.1: इंदौर में मूल्यांकन की गई 322 पहुंच में माध्य, सीमा और शीर्ष प्रदर्शन करने वाली परिग्रहण

लक्षण	माध्य	रेंज	शीर्ष प्रदर्शन करने वाली अभिगम
50% पुष्प आने के दिन	47.8	35.00-60.00	ईसी ३९०९७७, बीआर १५, एनआरसी १२,
			आईसीएस 84/86-85बी-41, ईसी 528623
			(अर्ली फ्लोरिंग)
परिपक्वता के लिए दिन	107.3	97.00-119.50	एमएसीएस 227, टीजीx 854-429, टीजीx 825-
			17 ई, बीआर 15, एमएसीएस 124 (प्रारंभिक
			परिपक्वता)
पौधे की लम्बाई	62.1	28.00-112.60	ईसी 291400, टीजीx 573-219 डी, वी 55, ईसी
(से.मी.)			287464, ईसी 389173 (ज्यादा लम्बी)
गांठों की संख्या	12.3	6.70-22.45	ईसी 309529, ईसी 390981, ईसी 389173,
			टीजीx 573-219 डी, टीजीx 854-60 ए (ज्यादा
			गांठ)
फली की संख्या	29.6	8.90-77.00	ईसी 251388, टीजीx 854-77 डी, एजीएस 193,
			टीजीx 860-11 डी, जेएस 20-86 (ज्यादा फली)
100 बीज भार (ग्राम)	6.8	3.17-13.03	बी 160-3, बीआर 10, एसीसी 1026, जेएस 20-
			38, ईसी 390977 (बोल्ड बीज)
अनाज उपज/पौधा	2.8	0.17-9.73	आरवीएस २००१-१८, ईसी ३९०९७७, जेएस २०-
(ग्राम)			38, ईसी 100778, आईसीएस 84/86-85बी-41
			(उच्च पैदावार)

जर्मप्लाज्म का उपयोग आनुवंशिक स्टॉक का विकास और मूल्यांकन प्राप्तकर्ता (एसएल 958) जीनोम को बढ़ाने के लिए, एसएल 958 (ई2ई2ई3ई3 और ई3ई4ई4) के नजदीकी आइसोजेनिक लाइन (एनआईएल) को

एसएल 958 के साथ पुन: संकरित किया गया था। एसएल 958 (ई1, ई2, ई3, ई4) के चौबीस एनआईएल का मूल्यांकन 6 चेक के साथ किया गया था। एनआरसी 225, एनआरसी 229, एनआरसी

230 और एनआरसी 249 जैसे चार आनुवंशिक स्टॉक (जेएस 20-34) जो श्रेष्ठ चेक है से 15-49 % ज्यादा उत्पादन प्रदान किया ।

तालिका 3.1.2: अनाज उत्पादन और परिपक्वता के लिए एनआईएल का मूल्यांकन

जेनेटिक स्टॉक	स		चेक्स		
जेनेटिक स्टॉक /	उत्पादन (किग्रा/हेक्टेयर)	परिपक्वता (दिन)	चेक किस्म	उत्पादन (किग्रा/हेक्टेयर)	परिपक्वता (दिन)
एनआरसी 225	1863 (42%)	101	जेएस 20-34	1314	88
एनआरसी 229	1632 (24%)	101	जेएस 20-98	818	104
एनआरसी 230	1510 (15%)	102	एनआरसी 138	1180	86
एनआरसी 249	1965 (49%)	104	एनआरसी 152	116	87
			आरएससी 10-52	336	102
			2011-35	299	102

एलील माईजिंग खनन और पीसीआर आधारित मार्कर विकास

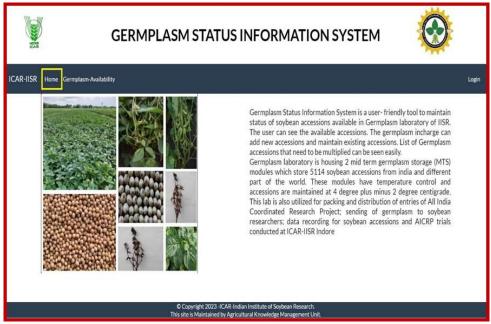
मैसरे विधि द्वारा जर्मप्लाज्म एक्सेशन V 61 की पहचान लॉन्ग जुमेनाइल एलील जे के रूप में की गई। प्रजनन कार्यक्रम में मार्कर सहायता प्राप्त चयन के लिए पीसीआर आधारित मार्कर विकसित किए गए थे जिसके आधार पर सिक्केंसिंग की गई एवं वी 61 में जे एलील की पुष्ठी की गई | उच्च और निम्न अक्षांशों के लिए अनुकूलन पुष्पण जीन TOF12 और TOF16 के दो समय फूल आने की सूचना (2020-21) में की गई| पूर्व में अनुक्रमित परिग्रहण ईसी 241780 में इन जीनों में इंडेल और एसएनपी पाए गए हैं।

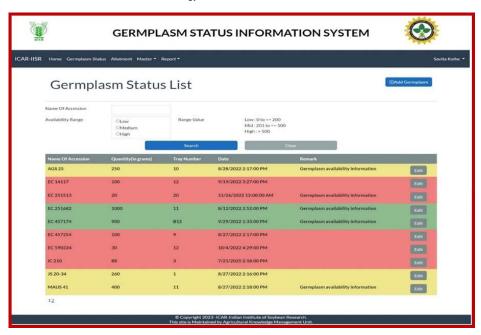
जर्मप्लाज्म वितरण

2022-23 के दौरान एआईसीआरपी के 25 संस्थानों और 7 केंद्रों को तीन हजार नौ सौ सैंतीस जर्मप्लाज्म वितरित की गई। संस्थान के वैज्ञानिकों को आठ सौ उनतालीस जर्मप्लाज्म की आपूर्ति की गई।

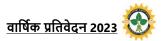
किस्मों का विकास मध्य प्रदेश राज्य के लिए दो लॉन्ग जुमेनाइल किस्मों एनआरसी 157 और एनआरसी 131 को अधिसूचित किया गया था। मध्य क्षेत्र में रिलीज के लिए एक किस्म एनआरसी 165 की पहचान की गई थी। चार प्रविष्टियां (एलजे 128, एलजे 131, एलजे 135 और एलजे 164) आईवीटी (अर्ली) 2023 में शामिल करने के लिए स्टेशन ट्रायल में योग्य और आईवीटी (सामान्य परिपक्वता) में एक प्रविष्टि (एलजे 50) पायी गई। एक प्रविष्टि (एनआरसी 262) ने एआईसीआरपी परीक्षणों में आईवीटी (प्रारंभिक परिपक्वता) में सर्वश्रेष्ठ जांच पर 23% उत्पादन लाभ दर्ज किया और एवीटी।-में पदोन्नत किया।

सोयाबीन जर्मप्लाज्म स्थिति सूचना प्रणाली का विकास


जर्मप्लाज्म स्थिति सूचना प्रणाली का प्रारंभिक प्रोटोटाइप आईसीएआर-आईआईएसआर, इंदौर में उपलब्ध सोयाबीन परिग्रहण की स्थिति को बनाए रखने के लिए विकसित किया गया है। उपयोगकर्ता के अनुकूल इंटरफेस एएसपी.नेट का उपयोग करके विकसित किया गया है। डेटा प्रबंधन, सूचना पुनर्प्राप्ति और रिपोर्ट निर्माण (एक्सेल शीट) के लिए मॉड्यूल विकसित किए गए हैं। नए परिग्रहण जोड़ने, मौजूदा जर्मलाइन को संपादित करने/हटाने और उस परिग्रहण के बारे में जानकारी प्राप्त करने के लिए मॉड्यूल



विकसित किए जिसे गुणा करने की आवश्यकता होती है। डाटाबेस को जर्मप्लाज्म उपलब्धता जानकारी को संग्रहीत करने के लिए बैक एंड पर एस क्यू एल सर्वर का उपयोग करके विकसित किया गया है। प्रदान किए गए विभिन्न उपयोगकर्ता-स्तर पर प्रमाणीकरण प्रदान


किये गए अंतिम उपयोगकर्ता, जर्मप्लाज्म इन-चार्ज और एडिमन इसे इस तरह से डिजाइन किया गया है कि इसका उपयोग अन्य फसलों के लिए भी किया जा सकता है।

चित्र 3.1.1 जर्मप्लाज्म स्थिति सूचना प्रणाली उपयोगकर्ता इंटरफ़ेस का होम पेज

चित्र 3.1.2 सोयाबीन जर्मप्लाज्म की उपलब्धता स्थिति दर्शाने वाला वेब पेज

आईआईएसआर 4.6/23: सोयाबीन में आनुवंशिक आधार को व्यापक बनाने के लिए पूर्व-प्रजनन

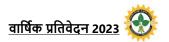
पीआई: वंगाला राजेश, सहा.पीआई: संजय गुप्ता, शिवकुमार एम, वेंनामपल्ली नटराज प्राथमिक जीनपूल (ग्लाइसिन मैक्स xग्लाइसिन सोजा) का उपयोग करके अंतर-विशिष्ट संकरण

ग्लाइसिन मैक्स (जेएस 95-60, एनआरसी 138, जेएस 335, जेएस 97-52, केडीएस 753, एमएसीएस 1460, आरएससी 10-46, वीएलएस 63, जेएस 9305, डीएसबी 34) के साथ ग्लाइसिन सोजा का उपयोग करने का प्रयास किया गया था। 9 अंतर-विशिष्ट क्रॉस के लिए एफ 2 पीढ़ी गुणण की गई थी और प्रति पौधे अनाज उत्पादन दर्ज की गई थी (तालिका 3.1.3)।

तालिका 3.1.3 9 अंतर-विशिष्ट क्रॉस के लिए एफ2 पीढ़ी में प्रति पौधे अनाज उत्पादन माध्य और सीमा के साथ

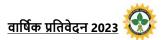
क्र.सं.	क्रॉस	पीढी	माध्य	रेंज
1	जेएस 20-34 x पीआई 593893	एफ 2	1.34	0.1-4.3
2	जेएस 20-34 x पीआई 549046	एफ 2	3.14	0.3-6.8
3	जेएस 20-34 x पीआई 407170	एफ 2	1.45	0.1-12
4	जेएस 9560 x पीआई 549046	एफ 2	1.42	0.1-3.4
5	जेएस 9560 x पीआई 593893	एफ 2	1.07	0.1-4
6	जेएस 9560 x पीआई 407170	एफ 2	0.77	0.1-3
7	जेएस 335 x पीआई 407170	एफ 2	1.37	0.1-5.36
8	जेएस 20-98 x पीआई 549046	एफ 2	1.8	0.1-7.2
9	ईसी 538828 x पीआई 549046	एफ 2	3.4	0.7-5.6

चित्र 3.1.3: जेएस 20-34 xपीआई 407170 (ग्लाइसिन मैक्स ग्लाइसिन सोजा) के इंटरस्पेसिफिक क्रॉस के एफ2 में परिवर्तनशीलता का चित्रण


ग्लाइसिन सोजा का लक्षणीकरण

पच्चीस ग्लाइसिन सोजा जैसे ईसी 1165891, ईसी 1165824, ईसी 1165933, ईसी 1165787, ईसी 1165790, ईसी 1165850, ईसी 1165879, ईसी 1165842, ईसी 1165822, ईसी 1165791, ईसी 1165914, ईसी 1165863, ईसी 1165789, ईसी 1165820, ईसी 1165826, ईसी 1165826, ईसी 1165813, ईसी 1165849, ईसी 1165808, ईसी 1165807, ईसी 1165839, ईसी 1165814, ईसी 1165897, ईसी

1165897, ईसी 1165923 और ईसी 1165928 को गुणात्मक और मात्रात्मक लक्षणों के लिए क्षेत्र की स्थिति में चित्रित किया गया था। प्रारंभिक अध्ययनों से पता चला कि जीनोटाइप के अंकुरण की क्षमता में विविधता पाई गई उसी 25 ग्लाइसिन सोजा को 9 एआईसीआरपी केंद्रों में वितरित किया गया था, विभिन्न कृषि जलवायु क्षेत्रों जैसे अल्मोड़ा, पालमपुर, धारवाड़, इम्फाल, जबलपुर, कस्बे दिगराज, लुधियाना, पंतनगर और रायपुर में जीनोटाइप के चरित्र-निर्धारण, गुणन और उपयोग के लिए वितरित किया गया था।


3.2 प्रारंभिक परिपक्वता, उच्च उत्पादन, वाइडर एडैप्टेबिलिटी और फूड-ग्रेड विशेषताओं के लिए प्रजनन

आईआईएसआर 4.4/23: सोयाबीन में विभिन्न परिपक्वता अविध के लिए उच्च अनाज और तेल उत्पादन के लिए प्रजनन

पीआई: शिवकुमार एम, सह.-पीआई: वी. नटराज, वी. राजेश। एन. राघवेंद्र, गिरिराज कुमावत उच्च अनाज उत्पादन एवं उच्च तेल के लिए संकरण उच्च उत्पादन और उच्च तेल के लिए संकरनउच्च तेल वाले किस्मों के प्रजनन द्वारा प्रयास किया गया और एफ1 की कटाई की गई (तालिका 3.2.1)।

तालिका 3.2.1: 2023 के मौसम के दौरान किए गए क्रॉस और लक्षित लक्षणों की सूची

क्रॉस का नाम	एफ1 बीजों की संख्या	लक्ष्य के लक्षण
एनआरसी 142 x एफ6 (एनआरसी 128 x जेएस 95- 60)	73	उच्च उत्पादन और उच्च तेल
एनआरसी 150 x जीडब्ल्यू 53	44	उच्च उत्पादन
जेएस 95-60 x जीडब्ल्यू 10	36	उच्च उत्पादन
जेएस 95-60 x एनआरसी 148	28	उच्च तेल
POP2 X NRC 142	29	उच्च उत्पादन और उच्च तेल
एफ 6 (एनआरसी 128 x जेएस 95-60) x एनआरसी 150	28	जल्दी परिपक्वता और उच्च उत्पादन
एनआरसी 150 x जीडब्ल्यू 10	20	उच्च उत्पादन
जीडब्ल्यू 30 x जेएस 95-60	19	उच्च उत्पादन
एनआरसी 150 x वाईपी 48	16	जल्दी परिपक्वता और उच्च उत्पादन
जेएस 95-60 x ईसी 528226	14	उच्च तेल
जीडब्ल्यू 18 x एनआरसी 150	13	प्रारंभिक परिपक्वता और उच्च उत्पादन
एसकेएयूएस-1 x एनआरसी 150	12	उच्च बीज भार
जेएस 95-60 x टीजीx 854-429	12	प्रारंभिक परिपक्वता और उच्च तेल
एनईसी 150 x जेएस 95-60	11	उच्च तेल
एनआरसी 150 x वाईपी 43	11	उच्च तेल
ईसी 95815 x जेएस 95-60	10	उच्च तेल
जीडब्ल्यू 53 x एनआरसी 142	10	उच्च उत्पादन और उच्च तेल
जेएस 335 x ओवाई 49-4	9	उच्च उत्पादन
POP2 X EC 95815	9	उच्च उत्पादन और उच्च तेल
वाईपी ४३ x एनआरसी १५०	9	उच्च उत्पादन
जीडब्ल्यू 18 x वाईपी 48	8	उच्च तेल
एनआरसी 142 x ईसी 95815	6	उच्च तेल
जीडब्ल्यू 53 x जेएस 95-60	6	उच्च उत्पादन
F6 (NRC 128 x JS 95-60) x POP2	6	उच्च उत्पादन
जीडब्ल्यू 18 x एनआरसी 142	2	उच्च उत्पादन और उच्च तेल
जीडब्ल्यू 53 x एनआरसी 142	5	उच्च उत्पादन और उच्च तेल
एनआरसी 252 x जेएस 20-34	3	प्रारंभिक परिपक्वता और उच्च उत्पादन
जेएस 95-60 x जीडब्ल्यू 53	5	उच्च उत्पादन

एफ6 (एनआरसी 128 x जेएस 95-60) x एनआरसी 181	5	उच्च उत्पादन
जेएस 95-60 x ईसी 95815	3	उच्च तेल
E3E4 x E2 100 SW, JS 97-52-BC3F1	29	अर्ली और बोल्ड
ई3ई4 x ई2 100 एसडब्ल्यू-एनआरसी 127- बीसी3एफ1	14	अर्ली और बोल्ड
जेएस 97-52 x E2100 SWBC2F1	96	अर्ली और बोल्ड
एनआरसी 127 x ई2100 एसडब्ल्यू-बीसी2एफ1	22	अर्ली और बोल्ड

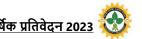
दोहराए गए परीक्षण में अनाज की उत्पादन के लिए उन्नत संतानों (उन्नत प्रजनन जीनोटाइप एफ6) का मूल्यांकन दो चेकों सहित कुल 34 उन्नत प्रजनन लाइनें; जेएस 20-34 और एनआरसी 142 का मूल्यांकन उत्पादन और विशेष लक्षणों के लिए किया गया था (तालिका 3.2.2)। क्रॉस एनआरसी 128 x जेएस 95-60 से प्राप्त प्रविष्टि 18 में ग्रेन उत्पादन सबसे अधिक (3081 किग्रा/हेक्टेयर) दर्ज की गई थी, इसके बाद उसी दूसरी इंट्री की उपज (2848 किग्रा/हेक्टेयर) दर्ज किया गया था। जल्दी परिपक प्रविष्टियाँ जैसे, A-184, A-31, A-162 की उपज > 21 क्विंटल/हेक्टेयर दर्ज की गई जिनकी पकने की अवधि 90 दिनों की पाई गई।

तालिका 3.2.2: उत्पादन और 100 बीज वजन के लिए उन्नत प्रविष्टियों का विवरण

जीनोटाइप	अनाज की पैदावार (किग्रा/हेक्टेयर)	100 बीज भार (ग्रा.)	परिपक्वता के लिए दिन	चेक से श्रेष्ठता (%)
14-1	1521	11.8	91	-4.03
15-1	1274	13.6	88	6.1
16-1	1688	14.3	90	48.5
38	1970	15	88	19.54
18	3081	14.1	99	48.55
15	817	10.6	108	-94
14	2385	15.8	108	33.54
39	1837	12.6	108	13.71
13	2685	15.6	98	40.96
30	2848	13	106	44.34
25	2161	10.8	109	26.65
10	2014	14.3	109	21.3
2	1881	13.9	111	15.73
19	2491	15.6	111	36.37
41	1777	10.2	102	10.8
49	1419	11	102	-11.69
28	1524	10.1	108	-4
23	1629	9.4	105	2.7
34	1555	11.2	101	-1.92
1	1955	12.7	108	18.92
16	2192	10.9	108	27.65
26	2355	13.2	101	32.69
37	1733	14.8	114	8.54
5	1674	12.9	114	5.31
31	2251	14.1	108	29.58

ार्षिक प्रतिवेदन 2023 [}]	®
------------------------------------	----------

42	2237	14.4	102	29.14
27	1700	13.3	114	6.76
29	1125	10.4	111	-40.8
ए-31 (40)	2118	14.8	90	25.16
ए-162(35)	2103	15.5	92	24.63
ए-184 (36)	2223	13.3	79	28.69
1-1	1970	14.2	89	19.54
जेएस 20-34	623	10.3	96	-154.41
एनआरसी १४२	1585	12.9	98	-
सीवी	24.58	14.1		
एसई	85.82	0.33		


एडवांस्ड ब्रीडिंग लाइन एफ7 का अनाज उत्पादन और परिपकता के लिए मल्टी लोकेशन इवैल्युएशन कुल 42 उन्नत प्रजनन लाइनों का मूल्यांकन बारह स्थानों पर दो चेकों के साथ उत्पादन और विशेषता लक्षणों के लिए किया गया था। जेएस 20-34 और एनआरसी 142 इंदौर

में, प्रविष्टि 146 (3348 किग्रा/हेक्टेयर), 151 (3377 किग्रा/हेक्टेयर), 152 (3829 किग्रा/हेक्टेयर), 154 (3649 किग्रा/हेक्टेयर) ने चेक किस्मों से बेहतर प्रदर्शन किया (तालिका 3.2.3)।

तालिका 3.2.3: एडवांस्ड ब्रीडिंग लाइन एफ७ का मल्टी लोकेशन जाँच अनाज उत्पादन और परिपक्वता के लिए

	अनाज की	100 बीज भार	परिपक्वता के	चेक की तुलना में वृद्धि %
आनुवंशिकी	पैदावार (किग्रा/हेक्टेयर)	(ग्रा.)	पारपक्षता क लिए दिन	70
1	1659.00	15.0	86	3.55
7	1402.00	13.7	90	-14.1
6	1733.0	14.0	86	7.67
14	1755.0	13.4	79	8.83
15	1355.0	14.8	79	-18.08
12	1466.0	14.3	79	-9.14
32	1881.0	19.0	79	14.93
25	1933.0	16.9	79	17.22
21	2451.0	17.5	79	34.72
30	1962.0	19.8	79	18.45
16	1718.0	13.9	87	6.86
18	874.0	13.2	86	-85.71
19	874.0	12.8	86	-85.71
22	2355.0	20.9	86	32.05
24	2222.0	19.0	86	27.99
35	2029.0	14.8	89	21.14
36	2696.0	13.2	90	40.65
38	1800.0	15.4	90	11.11
40	1762.0	14.7	87	9.19
42	1488.0	14.7	96	-7.52
43	1111.0	11.8	102	-44.01

45	1103.0	11.4	98	-45.05
57	1400.0	13.4	98	-14.2
58	1800.0	13.4	96	11.11
63	2466.0	19.0	90	25.11
64	1674.0	16.9	87	4.42
77	466.0	14.3	98	-243.34
94	1325.0	10.9	98	-20.75
95	1251.0	15.0	90	-27.89
96	1059.0	20.4	90	-51.08
101	1592.0	15.4	101	-0.50
107	2725.0	15.4	90	41.28
108	2303.0	15.4	98	30.52
109	2385.0	13.8	101	32.91
119	1933.0	12.8	101	17.22
124	1792.0	12.1	101	10.71
128	1444.0	12.3	98	-10.80
146	3348.0	17.0	108	52.21
150	2925.0	15.7	108	45.29
151	3377.0	17.3	111	52.21
152	3829.0	17.3	108	58.21
154	3644.0	16.2	111	56.09
149	2496.0	15.3	108	35.89
जेएस 20-34	1600.0	14.0	96.0	
एनआरसी142	911.0	12.6	98.0	-75.63
्र सीवी	22.55	15.66	-	-
एसई	111.826	0.360	-	-

प्रति पौधे उच्च फली और 100 बीज वजन का चुनाव अलग-अलग पीढ़ियों में

प्रति पौधा फली की संख्या के आधार पर 10 अलग-अलग क्रॉसों से कुल 350 F2 पौधों का चयन किया गया था। इसी तरह, प्रति पौधे फली की संख्या और प्रति पंक्ति (2 मीटर) अनाज की उत्पादन के आधार पर क्रमशः F3 पीढी और 60 F4 बल्कों से 200 पौधों का चयन किया गया था।

जेनेटिक स्टॉक पंजीकृत

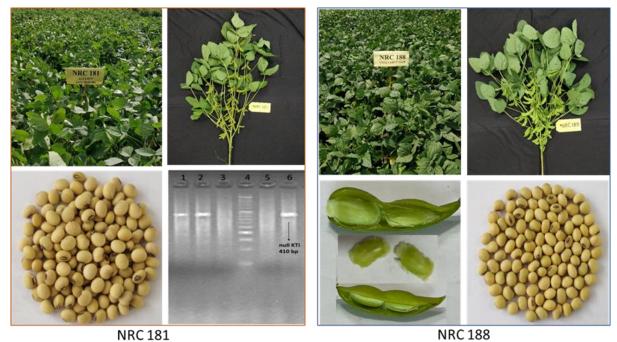
जेएस 335 की पृष्ठभूमिं में दाता के रूप में ग्लाइसिन सोजा का उपयोगं करके विकसित जीनोटाइप एनआरसीएसएल 8 को पीले मोज़ेक रोग (वाईएमडी)

(लुधियाना, चित्र 3.2.1) चारकोल रोट, एंथ्रेक्नोज, राइजेक्टोनिया एरियल ब्लाइट (आरएबी) और हॉटस्पॉट जबलपुर (चारकोल रोट, आरएबी और वाईएमडी) सहित कई स्थानों पर एशियाई सोयाबीन रस्ट जैसी कई प्रमुख बीमारियों के खिलाफ प्रतिरोधी प्रतिक्रिया मिली थीं । एनआरसीएसएल 8 को आईसीएआर-एनबीपीजीआर, नई दिल्ली के साथ पंजीकृत किया गया था। एनआरसीएसएल 8 ने उगरखुर्द और यूएएस धारवाड़ दोनों हॉटस्पॉट पर एशियाई सोयाबीन जंग के प्रति मोडरेट प्रतिरोधी प्रतिक्रिया का खुलासा किया और यह भारत में मध्यम प्रतिरोधी सोयाबीन किस्मों के विकास के लिए उपयोगी आनुवंशिक संसाधन हो सकता है।

चित्र 3.2.1 ए. जेएस 335 और बी. एनआरसीएसएल8, लुधियाना में पीले मोज़ेक रोग की प्राकृतिक महामारी की स्थितियों के तहत

डीबीटी परियोजना: मार्कर असीसटेड इंट्रोग्रेशन में बीज वजन, प्रारंभिक परिपक्वता और फोटोपीरियड प्रतिक्रिया कई तनाव सिहष्णु जलवायु स्मार्ट सोयाबीन किस्म जेएस 97-52 और केटीआई मुक्त किस्म एनआरसी 127 में पाया गया।

पीआई: शिवकुमार एम, सह-पीआई: गिरिराज कुमावत, संजय गृप्ता और वी. नटराज


फोरग्राउंड चयन जेएस 97-52 x (14-36ए x8-94-4) से प्राप्त 61 बीसी3एफ1 पीढ़ी में फोटो-असंवेदनशीलता (ई3 और ई4) जल्दी परिपक्वता (ई2) और 100 बीज भार से जुड़े मार्करों का उपयोग करके किया गया था। परिणामों से पता चला कि छह पौधों में E3, E4, E2 और 100 बीज वजन वाले एलील पाए गए थे। ई3, ई4, ई2 और 100 बीज वजन वाले एलील के लिए होमोज्यगस पौधों के चयन के लिए बीसी 3एफ 2 पौधों में फिर से फोर ग्राउंड चयन किया जाएगा।

एनआरसीएस1.12/02: खाद्य ग्रेड लक्षणों और उच्च तेल सामग्री के लिए ब्रीडिंग

पीआई: अनीता रानी, कोपी: विनीत कुमार

तालिका 3.2.4: खाद्य ग्रेड लक्षणों के लिए विकसित उन्नत किस्में और जीनोटाइप

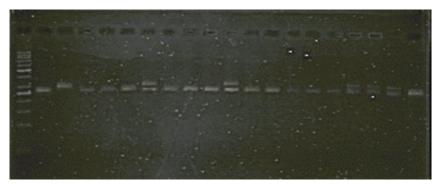
जीनोटाइप	लक्षण
एनआरसी 181	केटीआई और लिपोक्सिजेनेज 2 से मुक्त एक जल्दी परिपक्व जीनोटाइप सीवीआरसी द्वारा मध्य क्षेत्र में खेती के लिए जारी किया गया है
एनआरसी 188	केंद्रीय भारत की पहली सब्जी सोयाबीन किस्म, सीवीआरसी द्वारा मध्य क्षेत्र में खेती के लिए जारी की गई है
एनआरसी 197	नॉर्थ हिल जोन में एवीटी II में शीघ्र परिपक्व होने वाले केटीआई मुक्त जीनोटाइप को बढ़ावा दिया गया है
एनआरसी 258	मध्य क्षेत्र में एवीटी I में एक उच्च तेल जीनोटाइप को बढ़ावा दिया गया है।
एनआरसी २६८	IVT 2023 में एक Lipoxygenase 2 फ्री जीनोटाइप दर्ज किया गया है

चित्र 3.2.2: एनआरसी 181 और एनआरसी 188 - मध्य क्षेत्र में खेती के लिए जारी खाद्य ग्रेड चरित्र किस्में

NASF प्रोजेक्ट: मार्कर असीसटेड स्तेकिंग द्वारा पीले मोज़ेक रोग प्रतिरोध, नल किनिट्ज़ ट्रिप्सिन अवरोधक, नल लिपोक्सिजेनेज -2 जीन समूह से सोयाबीन के आनुवंशिक आधार को व्यापक बनाया पीआई: विनीत कुमार; को-पीआई: अनिता रानी, संजय गुप्ता और वंगला राजेश

पैतृक संयोजनों के लिए 20 लिंकेज समूहों में पैरेंटल पॉलीमॉर्फिज्म सर्वेक्षण NRC142 xSL955, PS1347 xNRC142. AVSB2012 xNRC142 और AVSB2013 xNRC142 पूरा हो गया है। 20 लिंकेज समूहों में सर्वेक्षण माता-पिता के संयोजन के लिए एसएसआर मार्करों द्वारा की गई | NRC142 xSL955, PS1347 xNRC142, AVSB2012 xNRC142 और AVSB2013 xNRC142 क्रमशः 375, 380, 376 और 381 थे, जो 5 सेमी की दूरी के भीतर कम से कम एक एसएसआर मार्कर का चयन करते थे। NRC142 xSL955, PS1347 xNRC142, AVSB2012 xNRC142 और AVSB2013 xNRC142 के लिए पॉलीमॉर्फिक पाए जाने वाले SSR मार्करों की संख्या क्रमशः 152, 155, 165 और 21 थी। इस प्रकार, पॉलीमॉर्फिज्म NRC142 xSL955 के लिए 40.53%. PS1347 xNRC142 के लिए 40.78%, AVSB2012 xNRC142 के लिए 43.88% और AVSB2013 xNRC142 के लिए 55.38% पाया गया | (तालिका 3.2.5)।

क्रॉस एनआरसी 142 xएसएल955 के लिए पूटेटिव एफ1 बीज जनवरी 2023 में बोए गए थे और वाईएमडी लिंक्ड एसएसआर मार्करों (जीएमएसी7एल और सेट 322) का उपयोग करके संकरण के लिए पुष्टि की गई थी। इस संकर वैधता परीक्षण से, 5 सटीक एफ 1 पौधों की पुष्टि की गई और एफ 1:2 बीजों की कटाई की गई। फसल मौसम 2023 में एफ 2 बीजों की बुवाई की गई थी और वाईएमडी प्रतिरोधी जीन वाले एफ 2 पौधों की पृष्टि वाईएमडी लिंक्ड एसएसआर मार्कर का उपयोग करके की गई थी और अनुमानित बीसी 1एफ 1 बीजों को प्राप्त करने के लिए प्राप्तकर्ता मूल एनआरसी 142 (टाइटिलx2एलx2) के साथ बैकक्रॉस किया गया था। खरीफ के मौसम 2023 में, माता-पिता के संयोजन AVSB2012 xNRC142 और AVSB2013 xNRC142 के बीच क्रॉस लगाए गए थे ताकि अनुमानित एफ 1 बीज प्राप्त किया जा सके।


322 जर्मप्लाज्म परिग्रहण और आंचलिक जांच किस्मों के बहुस्थान मूल्यांकन (पालमपुर, अल्मोड़ा, इंदौर, पंतनगर, परभणी, इम्फाल, पुणे) के आधार पर, सोयाबीन पर एआईसीआरपी के तहत संकरण कार्यक्रम के लिए विविध माता-पिता की पहचान की गई थी। विभिन्न कृषि जलवायु क्षेत्रों के लिए, क्षेत्र की अनुकूलित विविधता और डी 2 विश्लेषण के आधार पर पहचाने गए विविध जर्मप्लाज्म के बीच संकरण खरीफ 2023 में आयोजित किए गए थे। खरीफ 2022 में विकसित 101 पैतृक संयोजनों के एफ1 बीजों को आईसीएआर-आईआईएसआर. इंदौर में ऑफ सीजन (आरएबीआई 2023) में एफ2 तक उन्नत किया गया था। इंदौर और बेंगलुरु केंद्रों पर एफ 2 पौधों को एफ 3 तक गुणण किया जा रहा है। SL958 की पृष्ठभूमि में फोटोपीरियोडिक एलीलिक संयोजनों के साथ लाइनों के विकास के लिए, 12 माता-पिता संयोजनों के बीच संकरण आयोजित किए

गए जिनमें विभिन्न फोटोपीरियोडिक एलील के नियर आइसोजेंनिक लाईन शामिल हैं। तालिका 3.2.5: 20 लिंकेज समूहों में पेरेंटल पॉलीमोर्फिज्म का सर्वेक्षण किया गया

पेरेंटल कंबिनेशन	एनआर xएसए		पीएस1347 xएनआरसी142		एवीए xएनः	सबी2012 आरसी142	एवीएसबी xएनआरर्स	2013 1142
एल जी पी \गुणसूत्र	एम	पी	लाख	पी	एम	पी	एम	पी
ए १ (गुणसूत्र 5)	11	5	12	4	8	7	6	10
ए२ (गुणसूत्र ८)	20	10	15	15	15	15	17	13
बी 1 (गुणसूत्र 11)	10	8	10	8	7	11	5	13
बी 2 (गुणसूत्र 14)	13	4	9	8	5	12	5	12
सी 1 (गुणसूत्र 4)	14	1	12	3	11	4	11	5
सी २ (गुणसूत्र 6)	17	19	21	15	18	19	17	20
डी1ए (गुणसूत्र 1)	8	7	11	4	8	7	8	6
डी1बी (गुणसूत्र 2)	12	15	18	9	16	10	10	17
डी२ (गुणसूत्र १७)	16	6	20	3	14	7	11	12
ई (गुणसूत्र 15)	4	5	6	5	3	7	4	7
एफ (गुणसूत्र 13)	10	17	10	17	13	14	12	15
जी (गुणसूत्र 18)	9	4	6	7	7	6	4	8
एच (गुणसूत्र 12)	12	1	8	5	11	2	5	8
I (गुणसूत्र 20)	9	6	7	8	9	6	6	9
जे (सीआर 16)	10	7	10	7	12	5	9	8
के (गुणसूत्र १)	8	7	9	7	10	6	7	9
एल (गुणसूत्र १९)	9	9	13	5	9	9	9	9
एम (गुणसूत्र 7)	14	3	11	6	15	2	9	8
एन (गुणसूत्र 3)	7	7	8	7	8	7	6	9
ओ (गुणसूत्र 20)	10	11	9	12	12	9	9	13
कुल योग	223	152	225	155	211	165	170	211
% बहुरूपता	40.	53	40.78		43.88		55.38	

चित्र 3.2.3: एनआरसी 142 xएसएल955 क्रॉस में 'BARCSOYSSR_06_0662' एसएसआर मार्कर का उपयोग करके सच्चे एफ1 पौधों की पुष्टि। लेन एल 50 बीपी डीएनए सीढ़ी से मेल खाती है। P1 और P2 क्रमशः NRC142 और SL955 से मेल खाते हैं; और माता-पिता P1 और P2 दोनों के रूप में आयाम दिखाने वाली गलियाँ सही F1 पौधों से मेल खाती हैं।

3.3 अजैविक तनाव सहनशीलता के लिए ब्रीडिंग

डीएसआर 5.6ए/08: सोयाबीन में सूखा सहिष्णु किस्मों के लिए प्रजनन

पीआई: ज्ञानेश कुमार सातपुते , सह पीआई : संजय गुप्ता, मिलिंद रत्नापरखे, गिरिराज कुमावत, प्रिंस चोयाल, राकेश कुमार वर्मा, वंगाला राजेश और संजीव कुमार

संकरण

महिला अभिभावक के रूप में छह अच्छी तरह से अनुकूलित किस्मों के बीच क्रॉस का प्रयास करके कुल उनतीस एफ1 हासिल किए गए थे। जैसे जेएस 20-34 (सीजेड-अर्ली), एएमजेड 100-39 (सीजेड), आरएससी 10-46 (ईजेड), डीएसबी 34 (एसजेड), एनआरसी 136 (सीजेड और मध्य प्रदेश राज्य) और सूखा-सिहष्णु दाता अर्थात। TGX 709-50E, J 732, EC 107-104, PI 159923, NRC 137, NRC 256, NC 189, NRC 190, NRC 257।

तालिका 3.3.1: प्रयास किए गए नए क्रॉस की सूची और एफ1 की कटाई

क्र.सं.	क्रॉस	बीजों की संख्या
1	जेएस 20-34 x पीआई 159923	22
2	जेएस 20-34 x एनआरसी 137	23
3	AMS 100-39 x TGX 709-50E	4
4	एएमएस 100-39 x ईसी 107407	7
5	एएमएस 100-39 x एनआरसी 137	19
6	एएमएस 100-39 x एनआरसी 256	9
7	एएमएस 100-39 x एनआरसी 257	24
8	आरएससी 10-46 x जे 732	2
9	आरएससी 10-46 x पीआई 159923	2
10	आरएससी 10-46 x एनआरसी 256	10
11	आरएससी 10-46 x एनआरसी 189	2
12	आरएससी 10-46 x एनआरसी 190	9
13	आरएससी 10-46 x एनआरसी 257	7
14	डीएसबी 34 x टीजीx 709-50 ई	2
15	डीएसबी 34 x जे 732	8
16	डीएसबी 34 x ईसी 107407	15
17	डीएसबी 34 x पीआई 159923	20
18	डीएसबी 34 x एनआरसी 137	33
19	डीएसबी ३४ x एनआरसी २५६	9
20	डीएसबी 34 x एनआरसी 257	16
21	केडीएस 753 x टीजीx 709-50ई	6
22	केडीएस 753 x जे 732	12
23	केडीएस 753 x ईसी 107407	4
24	केडीएस 753 x एनआरसी 137	20
25	केडीएस 753 x एनआरसी 256	12
26	केडीएस 753 x एनआरसी 189	7
27	केडीएस 753 x एनआरसी 190	15
28	केडीएस 753 x एनआरसी 257	15
29	एनआरसी 136 x एनआरसी 257	4
कुल		338

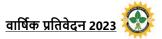
तालिका 3.3.2: बहु-अभिभावक एफ1 आबादी का विकास

क्र.सं.	F2 क्रॉस आबादी
1	[(जेएस71-05xएनआरसी 37) x (टीजीx 328-049)/(एएमएस एमबी 5-18xजेएस 95-60) x (पीआई 159923
	x जेएस 95-60)]
2	[(एएमएस एमबी 5-18xजेएस 95-60) x (पीआई 159923xजेएस 95-60) / (एएमएस एमबी 5-18 x जेएस
	95-60) x (पीआई 159923 x जेएस71-05)]
3	[(एएमएस एमबी 5-18 x जेएस 95-60) x (पीआई 159923 x जेएस 95-60) / (पीआई 159923 x एनआरसी
	37) x
	(पीआई 159923 x जेएस 95-60)]
4	[(38-11-265 x जेएस 95-60) x (जेएस71-05 x एनआरसी 37)/(एएमएस एमबी 5-18 x जेएस 95-60) x
	(पीआई 159923 x जेएस 95-60)]
5	[(पीआई 159923 x एनआरसी 37) x (पीआई 159923 x जेएस 95-60) / (38-11-265 x जेएस 95-60) x
	(जेएस71-05 x एनआरसी 37)]
6	[(जेएस71-05 x एनआरसी 37) x (टीजीx 328-049) / (पीआई 159923 x एनआरसी 37) x (पीआई 159923
	X
	जेएस 95-60)]
7	[(एएमएस एमबी 5-18 x जेएस 95-60) x (पीआई 159923 x जेएस71-05)/ (38-11-265 x जेएस 95-60) x
	(जेएस71-05 x एनआरसी 37)]

एफ2-एफ3 ऑफ-सीज़न रैपिड जनरेशन एडवांसमेंट के लिए चयन

एआईसीआरपीएस बेंगलुरु में ऑफ-सीज़न रैपिड जनरेशन एडवांसमेंट के लिए चार एफ2 आबादी से पच्चीस व्यक्तिगत पौधे चयन (बीज उत्पादन ₹ 20 ग्राम प्रति पौधे) भेजे गए थे।

तालिका 3.3.3: एआईसीआरपीएस बेंगलुरु में ऑफ-सीज़न रैपिड जेनरेशन एडवांसमेंट के लिए भेजे गए एफ2

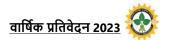

क्र.सं.	एफ 2 क्रॉस पोपुलेशन	चयनित संख्या
1	(एएमएस एमबी 5-18xजेएस 95-60) x (पीआई 159923xजेएस 95-60)	1
2	(जेएस७११-०५xएनआरसी ३७) x (एएमएस एमबी ५-18xजेएस ९५-६०)	3
3	(जेएस71-05xएनआरसी 37) x ईसी 602288	12
4	जेएस७१-०५xएनआरसी ३७	9
कुल		25

एफ2 और एफ3 आबादी में चुनाव

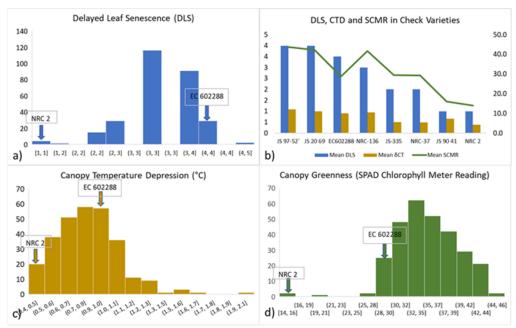
तेरह F2 और तेरह F3 आबादी में क्रमशः 59 और 44 व्यक्तिगत संयंत्र चयन (IPS) का अभ्यास किया गया था (तालिका 3.3.4)। दो उन्नत पीढ़ी की आबादी में कुल 17 आईपीएस बनाए गए थे।

तालिका 3.3.4: F2 और F3 आबादी में चुनाव

क्रॉस	आईपीएसएस
एफ2 आबादी	
(एएमएस एमबी 5-18 x जेएस 95-60) x (पीआई 159923 x जेएस71-	5
05)	
जीकेएस 20-7 x एनआरसी 137	4


(HILLIAN 10 - HILLIAN 15002) - HILLIAN 150022 - HILLIAN 150022	3
(एएमएस एमबी 5-18 x जेएस 95-60) x (पीआई 159923 x जेएस 95-	3
60)	13
(जेएस 71-05 x एनआरसी 37) x (एएमएस एमबी 5 18 x जेएस 95-60)	
(जेएस 71-05 x एनआरसी 37) x ईसी 602288	22
(एएमएस एमबी 5-18 x जेएस 95-60) x (पीआई 159923 x जेएस71-	6
05) /	
(38-11-265 x जेएस 95-60) x (जेएस71-05 x एनआरसी 37)	
[(जेएस71-05 x एनआरसी 37) x डीआरटी2 (टीजीx 328-049)] /	5
[(एएमएस एमबी 5-18 x जेएस 95-60) x (पीआई 159923 x जेएस 95-	
60)]	
जेएस 71-05 x एनआरसी 37 x पीआई 159923 x एनआरसी 37	1
कुल	59
एफ3 आबादी	
जेएस ७१-०५ x एनआरसी ३७	25
एनआरसी 136 x जीकेएस 21-3	1
जीकेएस 20-7 x एनआरसी 137	1
एनआरसी 137 x जीकेएस 21-4	1
एएमएस एमबी 5 18 x जेएस 95-60	1
जेएस ७१-०५ x एनआरसी ३७	15
कुल योग	44
उन्नत जनरेशन पोपुलेशन	
G4 BULK F5 [(C-2797 X JS 71-05) X (PK 472 X JS 335)] /	7
(जेएस 335 x युंग) x (ईसी 602288 x जेएस 90-41)]	
116 एफ7	10
कुल योग	17

एक उन्नत आरआईएल आबादी का फिनोटाइपिंग

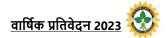

चार सिहष्णु अर्थात। जेएस 97-52, जेएस 20-69, ईसी 602288, एनआरसी 136, और चार संवेदनशील जांच अर्थात। जेएस 335, एनआरसी 37, जेएस 90-41, और एनआरसी 2 के साथ-साथ उन्नत आरआईएल आबादी (एफ7: 279 लाइनें) विकसित की गयी एक क्रॉस ईसी 602288 / एनआरसी 2 से प्राप्त जो सूखा सिहष्णुता लक्षणों के लिए समरूप थे। कम मिट्टी की नमी की स्थिति में एक ऑफ-सीज़न क्षेत्र परीक्षण में, विलंबित पत्ती सीनेसेंस (स्कोर 1-5), कैनोपी तापमान अवसाद (डिग्री सेल्सियस) और कैनोपी ग्रीनेनेस (एसपीएडी क्लोरोफिल मीटर रीडिंग) के लिए बीज भरने के चरण में चित्रित किया गया था।

तालिका 3.3.5: आरआईएल की आबादी में सूखा सिहष्णु लक्षणों का व्याख्यात्मक विश्लेषण

चेक किस्म	डीएलएस	सीटीडी (सी)	एससीएमआर
जेएस ९७-५२ (टी)	4	1.1	44
जेएस २० ६९ (टी)	4	1.0	42
EC602288 (T)	4	0.9	29
एनआरसी-136 (टी)	3	0.9	42
जेएस-३३५ (एस)	2	0.5	29
एनआरसी-37 (एस)	2	0.5	29
जेएस ९० ४१ (एस)	1	0.7	16
एनआरसी २ (एस)	1	0.4	14
माध्य	3	0.8	35
मात्रा	1 - 5	0.4-2.0	14-44.2
एसडी	0.6	0.2	4.3

सहनशील चेकों में संवेदनशील चेकों की तुलना में उच्च विलंबित पत्ती संवेदना (डीएलएस), कैनोपी तापमान अवसाद (सीटीडी), और कैनोपी ग्रीननेस (एससीएमआर) मूल्य थे। इन लक्षणों के लिए स्कीमबिनेट इनब्रेड लाईन की आबादी में पर्याप्त भिन्नता मौजूद थी। विलंबित पत्तियों की उत्पत्ति के लिए लाइन 115-150, 115-159 में, कैनोपी तापमान अवसाद के लिए 115-150 सिहत 73 लाइनों में, और कैनोपी ग्रीनेस के लिए 115-150, 115-159 सिहत 262 लाइनों में ट्रांसग्रेसिव पृथक्करण पाया गया था (तालिका 3.3.5)।

चित्र 3.3.1: (ईसी 602288 x एनआरसी 2) आरआईएल की आबादी में सूखा सिहष्णु लक्षणों का हिस्टोग्राम

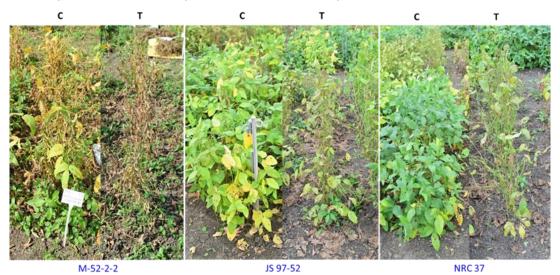

उत्पादन और विच्छेदन सिहष्णुता के लिए उन्नत प्रजनन आबादी का प्रारंभिक मूल्यांकन

सूखा-सिहण्णु माता-पिता से जुड़े अट्ठाईस (4-तरीकों के क्रॉस से)प्राप्त उन्नत प्रजनन आबादी (एफ7: 124 लाइनें) का मूल्यांकन प्रारंभिक रूप से उत्पादन के साथ-साथ पोटेशियम आयोडाइड (0.2% डब्ल्यू/वी) के साथ बीज भरने के चरण में पूरी कैनोपी का छिड़काव करके विलोपन सिहण्णुता के लिए किया गया था। सत्रह लाइनें उच्च उत्पादन (> 2000 किग्रा/हेक्टेयर) पाई गईं। उनमें

से, तीन पंक्तियाँ। M-51-2-6, M-22-26 और M-54-4A-8 ने क्रमशः 55.2, 45.1 और 38.8 प्रतिशत एसटीईएम रिजर्व मोबिलाइजेशन के संदर्भ में उच्च व्यसन सिहष्णुता दिखाई। लाइन एम-51-2-6 ने एक साथ कम बायोमास की कमी (14.3%) (तालिका 3.3.6) भी दिखाई। एनआरसी 37 में बहुत कम स्टेम रिजर्व मोबिलाइजेशन (15%) था 48.5% की उच्च बायोमास कमी के साथ टोलरेंट चेक जेएस 97-52 (46.2%) की तुलना में बायोमास (16.5%) के साथ था।

तालिका 3.3.6: चेक किस्मों के लिए उच्च उत्पादन वाली लाइनें और वर्णनात्मक आँकड़े

क्रमां	लाइन	उत्पाद	100	एसआरए	बायोमा	₹	ोगों पर प्रति	क्रिया	
क		न (किग्रा/ हक्टेयर)	बीज भार (ग्राम)	甲(%)	स घटने का (%)	एमवाईएम वी	एन्थ्रेक्नो ज़	आरए बी	बीपी
1	एम-54- 3बी-2	2728	8.8	30.4	52.9		एमआर		
2	एम-51-1ए- 1	2715	11.9	4.0	78.2		आर		
3	एम-52-2-2	2508	8.4	30.3	44.8		आर	एम आर	
4	एम-23-2	2476	11.2	26.6	49.7	एम आर	आर		
5	एम-51-2-6	2411	9.8	<u>55.2</u>	<u>14.3</u>		एमआर	एम आर	




6	एम-10-2ए- 18	2235	9.5	-	-		एचआर	
7	एम-41-7	2230	13	33.6	53.1			
8	एम-22-26	2210	11.4	<u>45.1</u>	42.0			
9	एम-54-4ए- 8	2189	11.2	38.8	<u>28.5</u>		एम आर	
10	एम-22-10	2155	12.3	15.9	73.5		एम आर	
11	एम-31-6	2142	8.5	20.5	68.9		एमआर	
12	एम-39-4	2087	10.9	23.7	47.8			
13	एम-51-3-2	2085	8.9	11.6	65.7			
14	एम-27-6	2079	11.8	-	46.7		आर	
15	एम-22-2	2050	9.5	28.6	51.6	एम आर	एम आर	
16	एम-52-2- 12	2050	8.6	34.6	46.0		आर	एमआ र
17	एम-27-1	2029	9.7	42.9	44.7	एम आर	एचआर	एम आर
18	जेएस20-69	664	6.4	<u>47.7</u>	<u>26.7</u>			
19	जेएस97-52 (टी)	949	7.2	46.2	<u>16.5</u>			
20	डीएंसबी ३४	<u>1796</u>	9.7	<u>71.1</u>	<u>22.7</u>			
21	आरवीएस7 6	633.9	7.4	<u>39.7</u>	<u>23.8</u>			
22	एनआरसी3 7 (एस)	1236	10.4	15.0	48.3			
	माध्य	1056	8.2	<u>43.9</u>	<u>27.6</u>			
	स्टैंड. देव।	481	1.7	20.1	12.2			
	स्टैंड. एरर	215	0.8	9.0	5.4			

तालिका 3.3.7: सूखा सिहष्णुता और उत्पादन से संबंधित लक्षणों के लिए सहसंबंध मैट्रिक्स (पियर्सन)

	बायोमास में कमी%	100-एसडीडब्ल्यूटी	बीज की उत्पादन
एसआरएम%	-0.792**	-0.126NS	-062एनएस
बायोमास में कमी%		0.194एनएस	0.255*
100-बीज भार			0.420**

* = 5% पर महत्वपूर्ण, ** = 1% पर महत्वपूर्ण और एनएस = गैर-महत्वपूर्ण एन = 97

चित्र 3.3.2: सिहष्णु जेएस 97-52 और संवेदनशील एनआरसी 37 जांच की तुलना में देशीकेशन-सिहष्णु लाइन एम-52-2-2 का क्षेत्र प्रदर्शन

इस आबादी की हॉटस्पॉट, एआईसीआरपीएस लुधियाना में एमवाईएमवी रोग के साथ-साथ सूखा सिहण्णु ईसी 602288 और संवेदनशील एनआरसी 2 चेक भी जांच की गई थी। EC 602288 ने मामूली प्रतिरोधी और NRC 2 को MYMV के लिए अत्यधिक अतिसंवेदनशील प्रतिक्रियाएं दिखाईं। पांच प्रजनन लाइनें अर्थात। M-3-8, M-22-29, M-53-4-24, M-23-14, और M-42-3 ने प्रतिरोध व्यक्त किया, और 14 पंक्तियाँ मामूली प्रतिरोधी प्रतिक्रियाएँ व्यक्त कीं।

आईसीएआर-आईआईएसआर, इंदौर में प्राकृतिक क्षेत्र की स्थितियों में समान प्रजनन आबादी (एफ7: 124 लाइनें) की स्क्रीनिंग ने 15 पंक्तियों में एंथ्रेक्नोज के लिए अत्यधिक प्रतिरोधी प्रतिक्रिया का खुलासा किया। एम-3-8, एम-5-3, एम-5-14, एम-10-2बी-3, एम-10-2ए-18, एम-19-3, एम-24-1, एम-24-6, एम-27-1, एम-27-4, एम-31-1, एम-51-1बी-14, एम-53-4-6, एम-53-4-9 जिसमें चेक जेएस 97-52 और 30 लाइनों में प्रतिरोधी

प्रतिक्रिया शामिल है। पांच पंक्तियाँ अर्थात, एम-8-14, एम-10-2बी-3, एम-19-3, एम-49-2-3, और एम-50-1-1 ने राइजोक्टोनिया एरियल ब्लाइट (आरएबी) रोग के प्रति प्रतिरोधी प्रतिक्रिया व्यक्त की।

11 उन्नत प्रजनन लाइनों (एफ7) में से, एक ही आबादी से प्राप्त और कीट प्रतिरोध के लिए परीक्षण किया गया, नौ प्रजनन लाइनें। जैसे एम-3-1, एम-3-8, एम-7ए-11, एम-7बी-4, एम-37-1, एम-37-2, एम-37-2, एम-37-6, एम-37-16, और एम-37-18 को कमरबंद बीटल और छह लाइनों एम-3-1, एम-7ए-11, एम-7बी-4, एम-8-9, एम-37-6 और एम-37-18 को डिफोलिएटर के लिए मामूली प्रतिरोधी पाया गया (तालिका 3.3.8)। किसी भी लाइन ने स्टेम फ्लाई के प्रतिरोध को नहीं दिखाया। लाइन एम-48-1 ने बैक्टीरियल पस्ट्यूल (बीपी) और फ्रॉग आई लीफ स्पॉट (एफएलएस) के प्रति अत्यधिक प्रतिरोधी प्रतिक्रिया व्यक्त की।

तालिका 3.3.8: स्टेम फ्लाई, गर्डल बीटल और डिफोलियटर्स के लिए अग्रिम प्रजनन लाइनों की प्रतिक्रिया

कोड	जीनो	स्टेम फ्लाई (% स्टेम	गिर्डल बीटल	डिफोलियेटर्स	
क्रमांक	टाइप	टनलिंग)	(% बीमारी) (% नुकसान)		
1	एम-3-1	44.16	1.00	5.84	
		(41.64) एचएस	(5.74) एमआर	(13.98) एमआर	
2	एम-3-8	44.83	1.00	7.50	
		(42.03)एचएस	(5.74) एमआर (15.89) एलअ		
3	एम-7ए-	63.09	1.00	5.83	
	11	(52.59) एचएस	(5.74) एमआर	(13.97) एमआर	
4	एम-7बी-4	52.29	1.00	2.50	
		(46.31) एचएस	(5.74) एमआर	(9.10) एमआर	
5	एम-8-9	32.49	17.67	5.84	
		(34.75) एलआर	(24.86) एचएस	(13.98) एमआर	
6	एम-8-14	37.17	13.50	12.50	
		(37.57) एस	(21.56) एस	(20.70) एलआर	
7	एम-37-1	61.06	1.00	14.17	
		(51.39) एचएस	(5.74) एमआर	(22.11) एलआर	
8	एम-37-2	36.19	1.00	8.34	
		(36.98) एस	(5.74) एमआर	(16.78) एलआर	
9	एम-37-6	78.01	1.00	5.00	
		(62.03) एचएस	(5.74) एमआर	(12.92) एमआर	
10	एम-37-	36.97	1.00	8.34	
	16	(37.44)एस	(5.74) एमआर	(16.78) एलआर	
11	एम-37-	55.94	1.00	5.83	
	18	(48.41) एचएस	(5.74) एमआर	(13.97) एमआर	
SEm±		(4.66)	(5.39)	(3.70)	
5% पर सीडी		(10.37)	(12.01)	(8.25)	

कम वर्षा की स्थिति में सोयाबीन किस्मों का बहुस्थान मूल्यांकन

रैंडोमाइण्ड ब्लॉक डिजाइन में इंदौर, कोटा और बारामती में 16 नई जारी किस्मों का मूल्यांकन किया गया था। इंदौर में, सेट का मूल्यांकन वर्षा-आश्रय सक्रिय स्थितियों और रूट लक्षणों के लिए भी किया गया था। मौसम संबंधी आंकड़ों के साथ सभी केंद्रों से डेटा प्राप्त किया गया है और इसका मूल्यांकन किया जा रहा है।

चित्र 3.3.3: एनआरसी 190, आईवीटी 2023 एनईएचजेड में एक उच्च उत्पादन वाला सूखा सहिष्णु प्रवेश

राज्य बहु-स्थान परीक्षण मूल्यांकन में प्रविष्टियाँ

दो सूखा सिहष्णु प्रविष्टियां एनआरसी 136 और एनआरसी 137 एक क्रॉस से प्राप्त (जेएस 97-52/एनआरसी 37) महाराष्ट्र में खरीफ 2023 (एनआरसी 136 और एनआरसी 137) और छत्तीसगढ़ (एनआरसी 137) राज्यों में परीक्षण के तीसरे वर्ष में थीं।

आईआईएसआर 7.8/23: सोयाबीन में जलभराव सिहण्युता लक्षण की पहचान और कर्यिकी प्रजनन पीआई: प्रिंस चोयाल, को-पीआई: ज्ञानेश कुमार सातपुते, गिरिराज कुमावत और नटराज।

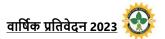
पूर्व-उद्भव अवायवीय तनाव (वाटरलॉगिंग तनाव) सिहष्णुता के लिए सोयाबीन जर्मप्लाज्म का मुल्यांकन

खरीफ 2023 के दौरान जलभराव संरचनाओं में पूर्व-उद्भव चरण में जलभराव सिहष्णुता के लिए 200 सोयाबीन जर्मप्लाज्म के एक सेट का मूल्यांकन किया गया था। बुवाई के ठीक बाद मिट्टी की सतह के ऊपर बर्तनों पर 10 सेमी पानी की परत बनाए रखने के माध्यम से 72 घंटे की जलभराव तनाव की स्थिति बनाई गई उपचार अविध पूरी होने के बाद, गमलों को एक सप्ताह के लिए ठीक होने की स्थिति दी गई और अंकुरण प्रतिशत दर्ज किया गया। 200 में से, तीस जर्मप्लाज्म को पूर्व-उद्भव चरण में जलभराव तनाव के प्रति सिहष्णुता दिखाई गई। जलभराव तनाव के तहत अंकुरण प्रतिशत की सीमा 3.3% से 86.7% थी। EC 81822 (50%), EC 0076754 (56.7%) और EC 251413 (86.7%) जलभराव तनाव के 72 घंटे के दौरान सबसे अच्छा प्रदर्शन करने वाले जर्मप्लाज्म थे।

चित्र 3.3.4: पूर्व उद्भव चरण में जलभराव तनाव के तहत सोयाबीन जर्मप्लाज्म

प्रजनन स्तर पर जलभराव सिहष्णुता के लिए सोयाबीन जीनोटाइप का मूल्यांकन

62 सोयाबीन जीनोटाइप के एक सेट में 25 एडवांस ब्रीडिंग लाइन, आरआईएल और सोयाबीन जर्मप्लाज्म शामिल हैं, जिसमें चार चेक शामिल हैं, बाढ़ वाले क्षेत्र में तीन प्रतिकृतियों के साथ रेनडमाईज ब्लॉक डिजाइन में प्रजनन चरण में जलभराव सिहष्णुता के लिए मूल्यांकन किया गया था (चित्र 3.3.5)। जलभराव क्षेत्र में 15 दिनों तक पूर्ण पुष्प स्तर पर पानी स्थिर रहा और नियंत्रण क्षेत्र में सामान्य नमी का स्तर बनाए रखा गया।



चित्र 3.3.5: प्रजनन चरण में जलभराव तनाव के तहत सोयाबीन जीनोटाइप

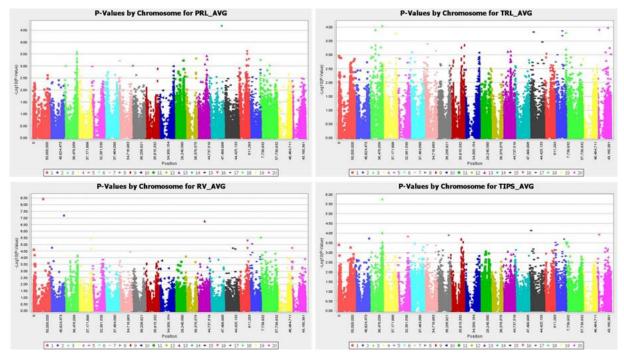
आईएसएसआर 3.16/21 सोयाबीन में बेहतर जड़ प्रणाली के लिए जीन/लोसाई की पहचान

पीआई: गिरिराज कुमावत, को-पीआई: मिलिंद बी. रत्नापरखे, ज्ञानेश के. सतपुते, शिवकुमार एम. और प्रिंस चोयल

3 सप्ताह के विकास चरण में रूट लक्षणों के लिए जर्मप्लाज्म का फिनोटाइपिंग

हाइड्रोपोनिक प्रणाली का उपयोग करके विभिन्न जड़ लक्षणों के लिए 234 अभिगमों का एक जर्मप्लाज्म सेट फेनोटाइप किया गया था। प्राथमिक रूट लंबाई (पीआरएल), कुल रूट लंबाई (टीआरएल), रूट व्यास (आरडीएम), सतह क्षेत्र (एसए), रूट वॉल्यूम (आरवी) और रूट टिप्स (आरटी), पौधों की तीन सप्ताह की वृद्धि के बाद दर्ज किए गए थे (तालिका 3.9., चित्र 3.3.6)। टीआरएल और आरवी परिग्रहण EC251405 में सबसे अधिक थे, जबिक EC358009 ने इन लक्षणों के लिए सबसे कम मूल्य दिखाया।

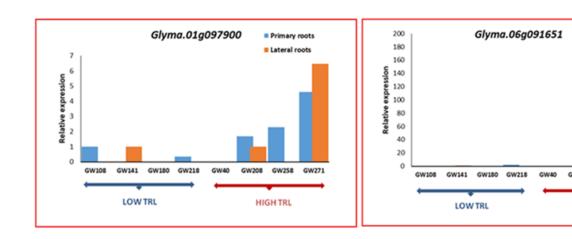
तालिका 3.3.9: 234 जर्मप्लाज्म परिग्रहण में विभिन्न जड़ लक्षणों के वर्णनात्मक आँकड़े


	पीआरएल (सीएम)	टीआरएल (सीएम)	एसए (सीएम2)	आरडीएम (एमएम)	आरवी (सीएम3)	आरटी
न्यूनतम	36.75	737.04	138.33	0.50	1.94	719.00
अधिकतम	79.05	2180.37	694.74	1.30	10.72	2626.00
माध्य	56.94	1420.25	324.87	0.80	5.83	1593.97
मानक विचलन	7.89	279.78	80.88	0.16	1.82	396.60
सीवी (%)	13.85	19.70	24.90	20.31	31.27	24.88

चित्र 3.3.6: तीन सप्ताह के चरण में जर्मप्लाज्म परिग्रहण में जड़ आर्किटेक्चर लक्षणों में फेनोटाइपिक भिन्नता

तीन सप्ताह के विकास चरण में रूट लक्षणों के लिए जीनोम वाइड एसोसिएशन अध्ययन

234 जीनोटाइप में रूट ट्रेट्स फिनोटाइपिंग डेटा के साथ एसएनपी मार्करों के जीनोम वाइड एसोसिएशन विश्लेषण ने प्राथमिक रूट लंबाई, कुल रूट लंबाई, रूट वॉल्यूम, सतह क्षेत्र और रूट टिप्स (चित्र 3.3.7) से जुड़े महत्वपूर्ण लोसाई की पहचान की।


चित्र 3.3.7 प्राथमिक रूट लंबाई (पीआरएल), कुल रूट लंबाई (टीआरएल), रूट वॉल्यूम (आरवी) और 234 सोयाबीन जर्मप्लाज्म के बीच रूट टिप्स से जुड़े एसएनपी) लोसाई के मैनहट्टन प्लाट

विपरीत पंक्तियों में SOR1-जैसे जीन के लिए जीन अभिव्यक्ति प्रोफाइलिंग

सेवेंटीन एम ओ आर-1 जैसे जीन को फाइलोजेनेटिक संबंध, संरक्षित रूपांकन, प्रोटीन विशेषताओं और जीन संरचनाओं के लिए लक्षित थी। सात जीन का उपयोग किया गया था अंतर जीन अभिव्यक्ति प्रोफाइलिंग के लिए जो परिग्रहण अलग/भिन्न लम्बाई की जड़ों के लिए चार हाई रूटिंग GW40, GW208, GW258, और GW271, और चार लो रूटिंग जीनोटाइप GW141, GW180, GW108 और GW218 का चयन किया गया था। सात सोर1-लाइक्स जीन के जीन अभिव्यक्ति विश्लेषण से दो जीन की विभेदक अभिव्यक्ति का पता चला। ग्लाइमा.01G097900 ने प्राथमिक जड़ की लंबाई के लिए अंतर अभिव्यक्ति दिखाई और ग्लाइमा.06G091651 ने आठ विपरीत जीनोटाइप (चित्र 3.3.8) में पार्श्व जड़ की लंबाई के लिए अंतर अभिव्यक्ति दिखाई।

GW258

HIGHTRL

चित्र 3.3.8: विभिन्न लाइनों में जड़ों की लम्बाई के एस ओ आर टी जैसी कजीन अलग अलग तरह से व्यक्त हुई |

3.4 जैव तनाव का प्रबंधन

आईआईएसआर 1.33/16: मार्कर सहायता प्राप्त चयन का उपयोग करके वाईएमवी प्रतिरोधी सोयाबीन किस्मों का विकास

पीआई: अनिता रानी, सह-पीआई: विनीत कुमार और बीएस गिल

एमएएस का उपयोग करके विकसित वाईएमवी प्रतिरोधी और उच्च तेल प्रविष्टि एनआरसी 259 को मध्य क्षेत्र में एवीटी 1 में पदोन्नत किया गया है। मार्कर सहायता प्राप्त चयन द्वारा विकसित दो वाईएमवी प्रतिरोधी प्रविष्टियां एनआरसी 259 और एनआरसी 260 को दूसरे वर्ष के मुल्यांकन के लिए नॉर्थ ईस्ट हिल जोन के आईवीटी में जाँच हेतु रखा गया है। एनआरसी142 (डबल नल) x एनआरसीएसएल2 (जेएस335 के वाईएमवी प्रतिरोधी ईडीवी) के एफ 7 को खरीफ में उठाया गया था और वाईएमवी प्रतिरोध जीन रखने वाली संतान लाइनों का हॉट स्पॉट लुधियाना में परीक्षण किया गया था। एनआरसी142 (डबल नल) x एनआरसीएसएल2 (जेएस335 के वाईएमवी प्रतिरोधी ईडीवी) के एफ 7 को खरीफ में बढाया गया था और नेटिव पेज का उपयोग करके केटीआई की उपस्थिति/अनुपस्थिति और रैपिड परख का उपयोग करके लिपोक्सिजेनेज 2 गतिविधि की उपस्थिति/अनुपस्थिति के लिए उच्च उत्पादन वाली लाइनों के बीजों का परीक्षण किया गया था। NRC142 के F 7 X BC 3 JS95-60 X (JS95-60 X SL525) (YMV प्रतिरोधक) को खरीफ में आगे बढाया गया था और YMV प्रतिरोध जीन रखने वाली संतान लाइनों का हॉट स्पॉट लुधियाना में परीक्षण किया गया था। देशी पृष्ठ का उपयोग करके केटीआई की उपस्थिति/अनुपस्थिति के लिए उच्च उत्पादन प्रतिरोधी लाइनों के बीजों का परीक्षण किया गया और रैपिड परख का उपयोग करके लिपोक्सिजेनेज 2 गतिविधि की उपस्थिति/अनुपस्थिति का परीक्षण किया गया। क्रॉस AMS 100-39 x (NRC149 x AMS100-39) के BC 2F 1s को ऑफ सीजन में आगे बढ़ाया गया था और BC 2F 2s को खेत में खरीफ में बढ़ाया गया था। वाईएमवी प्रतिरोध के सत्यापन के लिए पीएयू, लुधियाना (वाईएमवी के लिए हॉट स्पॉट) के क्षेत्रों में वाईएमवी प्रतिरोध जीन के साथ अग्रिम प्रजनन लाइनें लगाई गईं।

आईआईएसआर 3.11बी/18: चारकोल रोट और एंथ्रेक्नोज रोगों के खिलाफ सोयाबीन में सुधार या संशोधन

पीआई: वी. नटराज सह-पी. आई.: एलएस राजपूत, संजीव कुमार, शिवकुमार, एम, वी. राजेश, पीके अमरेट, एमबी रतापर्खे और शालिनी हुलीगोल एन्थ्रेक्नोज प्रतिरोध स्रोतों की पहचान

बारह सोयाबीन जीनोटाइप का जो पहले (इंदौर आइसोलेट के खिलाफ) प्रतिरोधी पाए गए थे, को पोड-इनोक्यूलेशन विधि का उपयोग करके पुनर्मूल्यांकन किया गया था। (टीकाकरण के दिन) के पश्चात कोई भी जीनोटाइप प्रतिरोधी नहीं पाया गया। हालांकि, जीनोटाइप ईसी 95677, जेएस 23-09, ईसी 39751, एनआरसी 150 और जेएस 22-18 मामूली रूप से प्रतिरोधी पाए गए।

आईआईएसआर 4.5/23: सोयाबीन में चारकॉल रॉट और एंथ्रेक्नोज रोगों के खिलाफ प्रतिरोध के लिए प्रजनन

पीआई: वी. नटराज; को-पीआई: पीके अमरते, संजीव कुमार, शिवकुमार, एम, वंगला राजेश और एमबी रतापारखे

संकरण

तालिका 3.4.1: उच्च पैदावार, चारकोल रॉड और एंथ्रेक्नोज प्रतिरोध के लक्ष्य प्राप्ति हेतु प्रजनन किया गया |

क्रॉस नाम	क्रॉस नाम
जेएस 20-38 x जेएस 20-34	जेएस 20-69 x एनआरसी 150
एनआरसी 181 X POP2	जेएस 20-69 x जेएस 22-18
जेएस 20-20 x जेएस 22-18	एनआरसी 181 x वाई पी P43
जेएस 20-34 x जेएस 20-38	जेएस 20-34 x ईसी 457464
जेएस 20-34 x पीपी6	वाई एम वी x 16 x POP2

एनआरसी 150 x वाईएमवी 16	जेएस 20-98 x ईसी 34106 x जेएस 95- 60
पोप 2 x जेएस 95-60	जेएस 20-20 x एनआरसी 188
जेएस 20-69 x (जेएस 20-69 x जेएस 95- 60)	जेएस 21-05 x POP2
एनआरसी 181 x एनआरसी 142	जेएस 22-18 x पीओपी2
ईसी 457254 x एनआरसी 150	POP2 X PS 1569
जेएस 21-05 x जेएस 22-18	जेएस 22-18 x एनआरसी 188
एनआरसी 127XEC 34372	जेएस 20-98 x पीपी6
एनआरसी 142 x एनआरसी 150	एनआरसी 127 x एनआरसी 150
ईसी 18596 x जेएस 20-34	वाईएमवी 16 x एनआरसी 150
ईसी 18596 x एनआरसी 150	जेएस 20-69 x जेएस 95-60
जेएस 22-18 x पीपी6	जेएस 20-20 x POP2
एनआरसी 150 x POP2	वाईपी ४९ x एनआरसी १८८
जेएस 20-98 x एनआरसी 150	जेएस 20-98 x ईसी 18596
1289560F6 x JS 95-60	जेएस 20-34 x पीओपी2
एनआरसी 142 x 1289560एफ6	पीएस 1569 x जेएस 20-34
POP2 X NRC 142	जेएस 22-12 x पीओपी2
1289560F6 x POP2	एनआरसी 150 x जेएस 20-34

एन्थ्रेक्नोज प्रतिरोध स्रोतों की पहचान

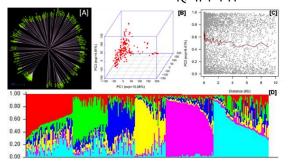
पॉड-इनोक्यूलेशन विधि का उपयोग करके एंथ्रेक्नोज प्रतिरोध (सबसे विषैले आइसोलेट-महू इसोलेट) के लिए कुल 95 जीनोटाइप का मूल्यांकन किया गया था। (टीकाकरण के दिन) पश्चात, उनमें से सात जीनोटाइप अर्थात, NRC 130, NB 208, AGS 163A, NRC 202, NRC 152, EC 34106 और CAT 1504 प्रतिरोधी पाए गए।

उच्च उत्पादन और एन्थ्रेक्नोज़ प्रतिरोध के लिए अर्ध-सिब परिवारों का मूल्यांकन

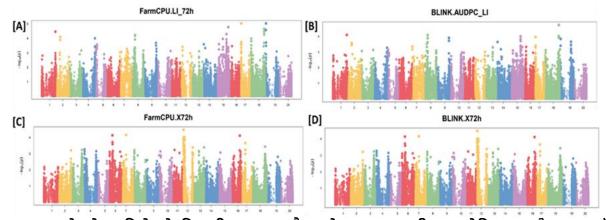
तीन अर्ध-सिब परिवार (एफ3), जेएस 20-98 x जेएस 95-60 (एन=265), ईसी 34372 x जेएस 95-60 (एन=95) और जेएस 20-34 xजेएस 95-60 (एन=43), और तीन अर्ध-एसआईबी परिवार (एफ4) अर्थात, जेएस 20-98 xजेएस 95-60 (एन=265), ईसी 34372 xजेएस 95-60 (एन=95) और जेएस 20-34 xजेएस 95-60 (एन=43) का मूल्यांकन एन्थ्रेक्नोज़ प्रतिरोध एवं उच्च उत्पादन के लिए किया गया था।श्रेष्ठ पौधों का चयन किया गया और अगले मौसम में इसका आगे मूल्यांकन किया जाएगा।

गैर मौसम में पीढ़ी का गुणण

ग्रीष्मकालीन 2023 के दौरान, दो रिल आबादी जेएस 20-98 x जेएस 95-60 (एन=350) और जेएस 20-34 x जेएस 95-60 (एन=95) को क्रमशः एफ4 और एफ5 में उन्नत किया गया था।


तालिका 3.4.2: रबी 2023 के दौरान एफ1 क्रॉस की सूची एफ2 तक उन्नत

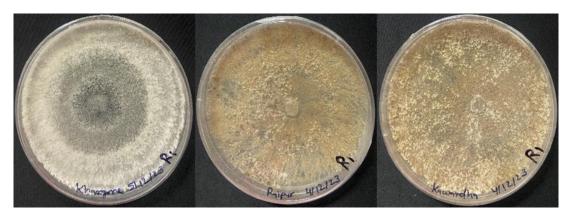
क्र.सं	क्रॉस	क्र.सं.	क्रॉस
1	एनआरसी 150 xवाईएमवी 16	9	जेएस 20-20 xजेएस 22-18
2	जेएस 20-34 xपीपी6	10	एनआरसी 142 xएनआरसी 150
3	वाईएमवी 16 xएनआरसी 150	11	एनआरसी 181 xएनआरसी 142
4	एनआरसी 181 xपीओपी2	12	जेएस 20-69 x(जेएस 20-69 xजेएस 95-60)
5	एनआरसी 127 xईसी 34372	13	जेएस 20-69 xजेएस 95-60
6	जेएस 20-38 xजेएस 20-34	14	जेएस 20-98 xजेएस 20-38
7	POP2 xJS 95-60	15	ईसी 457254 xएनआरसी 150
8	जेएस 20-34 xपीओपी2	16	जेएस 21-05 xजेएस 22-18


डीएसटी-एसईआरबी: जीनोमिक रणनीतियां सोयाबीन (ग्लाइसिन मैक्स) में एंथ्रेक्नोज प्रतिरोध में सुधार के लिए

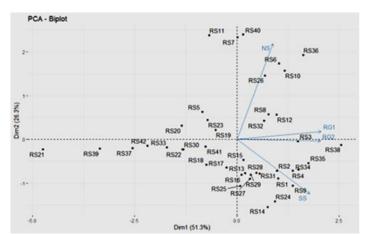
पीआई: मिलिंद रत्नापारखे, को-पीआई: नटराज वी., गिरिराज कुमावत, शिवकुमार एम, लक्ष्मण सिंह राजपूत, सुभाष चंद्रा

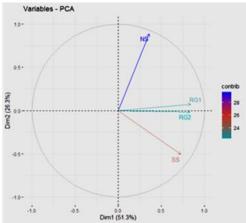
एन्थ्रेक्नोज़ प्रतिरोध के लिए जीवास विश्लेषण सोयाबीन एंथ्रेक्नोज सोयाबीन की एक प्रमुख फोलियर बीमारी है जो सडन और तने में घावों से उत्पादकता में नुकसान का कारण बनता है। प्रतिरोधी जीन आणविक मार्करों और उनके स्थानों के बारे में सीमित जानकारी उपलब्ध है। इस दृष्टिकोण में, हमने एंथ्रेक्नोज प्रतिरोध से जुड़े महत्वपूर्ण एसएनपी की पहचान करने के लिए जीडब्ल्यूएएस विश्लेषण किया। जीवास में 269 सोयाबीन जीनोटाइप शामिल थे, आर। डायवर्सिटी विश्लेषण में जीएपीआईटी उपकरण के भीतर एफएआरएमसीपीयू और ब्लिंक मॉडल का उपयोग करते हुए फाइलोजेनेटिक ट्री और पोपुलेशन संरचना में छह अलग-अलग समूह दिखाए (चित्र 3.4.1)। विश्लेषण में पीडीआई (पॉड इनोक्यूलेशनन के 48 और 72 घंटे के बाद स्कोर दर्ज किए गए), एलआई (72 घंटे के बाद दर्ज स्कोर), और एयूडीपीसी (एरिया अंडर डिसीज प्रोग्नेस), पत्ती इनोक्यूलेशन डेटा से प्राप्त एंथ्रेक्नोज प्रतिरोध-संबंधी लक्षणों पर ध्यान केंद्रित किया गया। जीडब्ल्यूएएस विश्लेषण ने एसएनपी के एक विशिष्ट सेट से जुड़े गुणसूत्रों 16, 18 और 19 पर महत्वपूर्ण लोसाई का खुलासा किया (चित्र 3.4.2)। इसके अलावा, प्रमुख एसएनपी ने गुणसूत्र 16 पर एनबीएस-एलआरआर जीन के एक समूह की पहचान की।

चित्र 3.4.1: सोयाबीन के जीडब्ल्यूएएस पैनल के लिए एसएनपी का उपयोग करके विविधता विश्लेषण। 269 सोयाबीन जर्मप्लाज्म लाइनों के फाइलोजेनेटिक ट्री का उपयोग (ए), प्रिंसिपल कंपोनेंट एनालिसिस (बी), एसएनपी के पीएआईआर की तुलना महत्वपूर्ण एलडी (सी), पोपुलेशन स्ट्रक्चर (डी), छह अलग-अलग समूहों को फाइलोजेनेटिक ट्री और पोपुलेशन संरचना में देखा गया था।


चित्र 3.4.2: एन्थ्रेक्नोज प्रतिरोध के लिए जीडब्ल्यूएएस पैनल से प्राप्त एसएनपी का एसोसिएशन। मैनहट्टन प्लॉट एंथ्रेक्नोज प्रतिरोध से संबंधित लक्षणों से जुड़े महत्वपूर्ण एसएनपी दिखाता है। पीडीआई, पीओडी इनोक्यूलेशन के 48 और 72 घंटे के बाद दर्ज किया गया स्कोर; एलआई, एसकोर 72 घंटे के बाद दर्ज किया गया। एयूडीपीसी, एरिया अंडर डिजीज प्रोग्रेस कर्व पत्ती इनोक्यूलेशन डेटा से प्राप्त होता है।

आईआईएसआर 3.11/22: राइजोक्टोनिया एरियल ब्लाइट रोग के खिलाफ सोयाबीन में सुधार


पीआई: संजीव कुमार, को.-पीआई: वी नटराज, शिवकुमार एम, एमबी रत्नापरखे, केपी सिंह, पेजांगुली चक्रुनो और पवन अमरेत

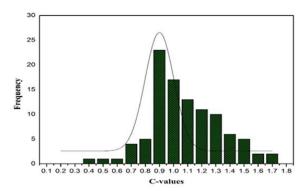

भारत के विभिन्न सोयाबीन उत्पादक क्षेत्रों से आरएबी रोग के कारण कुल 42 राइजोक्टोनिया सोलानी आइसोलेट्स एकत्र किए गए थे। रेडियल ग्रोथ के आधार पर, RS3 (सेहोर), RS34 (बिन्दुखट्टा), RS35 (कमलावागंजा) तेजी से बढ़ रहे आइसोलेट थे, जबिक, RS21 (होशंगाबाद), RS22 (खरगोन) और RS39 धीमी गति से बढ़ रहे थे। इन आइसोलेट्स ने अलग-अलग मायसेलियल रंगों का उत्पादन किया, अर्थात, सफेद, पीले रंग का सफेद और लाल भूरा रंग। माइसेलियल वृद्धि या तो हवाई या उप हवाई पाई गई। सभी आइसोलेट्स ने काले खुरदरे या चिकने सफेद रंग में स्क्लेरोटिया का उत्पादन किया, हालांकि, कुछ आइसोलेट्स अर्थात, RS21 (होशंगाबाद), RS22 (खरगोन), RS33 (छिंदवाड़ा), RS37 (देपालपुर), RS41 (देवास) और RS42 (जयपुर) ने कोई स्क्लेरोटिया का उत्पादन नहीं किया (चित्र 3.4.3)।

विभिन्न रूपात्मक पात्रों के पीसीए बिप्लॉट विश्लेषण से पता चला कि पीसी। 51.29% था और पीसी2 26.33% था, जो 77.62% का संचयी भिन्नता दिखाता है। मापदंडों के बीच, स्क्लेरोटियल आकार पैरामीटर के बाद स्क्लेरोटियल संख्या ने अधिकतम योगदान दिखाया। इसी तरह, फंगल आइसोलेट्स में RS21, RS39, RS37, RS38, RS36, RS11, RS40, RS7, RS42, RS6, RS10, RS35 द्वारा दिखाए गए अधिकतम विचरण घटते क्रम में। पीसीए बिप्लॉट से पता चला है कि स्क्लेरोटियल आकार सकारात्मक रूप से RS9, RS24, RS1, RS4, RS34, RS2 और RS31 से संबंधित है। रेडियल ग्रोथ RS38 और RS3 के साथ सकारात्मक रूप से सहसंबद्ध थी। इसी तरह, स्क्लेरोटियल नंबर को RS6, RS26, RS40, RS10 और RS36 फंगल आइसोलेट्स (चित्र 3.4.4) के साथ सकारात्मक रूप से सहसंबद्ध किया गया था।

चित्र 3.4.3: विभिन्न भौगोलिक क्षेत्रों से एकत्र किए गए आर. सोलानी आइसोलेट्स की मॉर्फोलॉजिकल वृद्धि

चित्र 3.4.4: 42 आर. सोलानी आइसोलेट्स के विभिन्न रूपात्मक पात्रों का पीसीए बिप्लॉट विश्लेषण।

आईआईएसआर 3.12/19: कीटों को नष्ट करने के खिलाफ सोयाबीन सुधार


पीआई: वंगाला राजेश, सीओ-पीआई: लोकेश कुमार मीणा, शिवकुमार एम, वेंनामपल्ली नटराज, मिलिंद रत्नापर्खे

कीटों के प्रतिरोध को विकृत करने के लिए सोयाबीन की पहुंच की स्क्रीनिंग

आरबीडी में डिफोलिएटिंग कीड़ों (स्पोडोप्टेरा लिटुरा) के खिलाफ फील्ड और लैब स्थितियों में लगभग 106 काली सोयाबीन जर्मप्लाज्म लाइनों की जांच की गई थी। स्पोडोप्टेरा लिटुरा के लिए एंटीक्सेनोसिस के वरीयता सूचकांक (सी) के आधार पर, सोयाबीन पहुंच को जेएस 335 के रूप में अतिसंवेदनशील जांच की तुलना में प्रतिरोध के आधार पर वर्गीकृत किया गया था। EC 1039028 ने मजबूत एंटीक्सेनोसिस का प्रदर्शन किया जबकि 4 जीनोटाइप विज, JS (SH) 131, EC 589407, AGS 160 और IC 24997 ने मध्यम एंटीक्सेनोसिस का प्रदर्शन किया।

स्पोडोप्टेरा लिटुरा के खिलाफ एंटीक्सेनोसिस के लिए 9 इंटरस्पेसिफिक क्रॉस (ग्लाइसिन मैक्स xग्लाइसिन सोजा) सिहत पच्चीस एफ1 क्रॉस का परीक्षण किया गया था। फोर एफ1 इंट्रास्पेसिफिक क्रॉस विज, एकेएसएस 67 x जेएस20-34, एफ4पी21 xलाइन 220, जेएस 335 xएफ4पी21, जेएस 95-60 xएकेएसएस 67 और 5 इंटरस्पेसिफिक क्रॉस अर्थात, जेएस 335 xपीआई 407170, जेएस 20-34 xपीआई 593983, जेएस 95-60 xपीआई 593983, जेएस 95-60 xपीआई 593983, जेएस 95-60 xपीआई 593983, जेएस 95-60 पीआई 593983, जेएस 95-60 क्रॉस अर्थात, जेएस 20-34 पीआई 593983, जेएस 95-60 क्रॉस 95-60 क्र

क्रॉस एफ4पी21 xलाइन 220 (जेएस 335 xग्लाइसिन सोजा) से प्राप्त एफ2 जनसंख्या, जिसने एफ1 में मजबूत एंटीक्सेनोसिस का प्रदर्शन किया, का स्पोडोप्टेरा लिटुरा के खिलाफ एंटीक्सेनोसिस के लिए अध्ययन किया गया और जनसंख्या के बीच काफी भिन्नता का पता चला और प्रकृति में पॉलीजेनिक (मात्रात्मक लक्षण) का पता चला।

चित्र 3.4.5: F4P21 xलाइन 220 (जेएस 335 X ग्लाइसिन सोजा) की एक F2 आबादी पॉलीजेनिक विशेषता की निरंतर भिन्नता को दर्शाती है

स्टेम फ्लाई और करडल बीटल प्रतिरोध के लिए सोयाबीन जीनोटाइप का मुल्यांकन

स्टेमफ्लाई और गर्डल बीटल प्रतिरोध के लिए फील्ड स्थितियों में 106 काली सोयाबीन जर्मप्लाज्म लाइनों के एक सेट की जांच की गई थी। स्टेमफ्लाई के मामले में, 9 जीनोटाइप विज, यूपीएसएम 593, केटी रामेश्वर, ईसी 102322, पीके 564, यूपीएसएम 579, पूसा 97-03, ईसी 232075, एजीएस 113, ईसी 389164 ने मध्यम प्रतिरोध का प्रदर्शन किया, ८ जीनोटाइप अर्थात, टैक्स ३४२५1, ईसी 389164, टैक्स 34251, पीएसएलओ 92, जे 563, जे 473, ईसी 1039108, एजीएस 108, एजीएस 60, आईसी 498621 अतिसंवेदनशील थे जबिक ईसी 1039035 अत्यधिक अतिसंवेदनशील थे। गर्डल बीटल के मामले में. 16 जीनोटाइप अर्थात, BLACK BOLD, EC 457066, UPSM 314, BHATT BLACK KURSA, EC 100804, RPSP 722, PP 26, PK 1005, UPSM 600, NRC-2 (CAT 2069), UPSM 1087, EC 251886, UPSM 640, UPSM 445, UPSM 700, UPSM 445, UPSM 700, UPSM 653

वार्षिक प्रतिवेदन 2023

मामुली रूप से प्रतिरोधी पाए गए जबकि PK 515 अत्यधिक अतिसंवेदनशील था।

उत्पादन उन्नति और चयन

चौदह क्रॉस अर्थात, एजीएस 155 x एकेएसएस 67, जेएस 97-52 x (जेएस20-34 x लाइन 202), एफ4पी21 xलाइन 220. हरसोया x जेएस 9305, हरसोया x (एफ4पी21 xलाइन 220), जी5पी22 x जेएस 335, जेएस 335 x एफ4पी21, एफ3पी18 x जेएस 335, जेएस 20-34 x जी5पी22, एफ4पी21 xलाइन 202, एफ3पी18 x लाइन 202, जेएस 9560 x लाइन 220, आरकेएस 113 x एसएल 1104, जेएस 20-34 x लाइन 220 को एसपीडी विधि द्वारा एफ3 पीढी तक उन्नत किया गया था।

स्पोडोप्टेरा लिट्रा के खिलाफ सोयाबीन जीनोटाइप की एंटिक्सेनोसिस और एंटीबायोसिस प्रतिक्रिया पीआई: लोकेश कुमार मीणा, कोपी: वंगाला राजेश

विभिन्न सोयाबीन जीनोटाइप (एवीटी-II) पर स्पोडोप्टेरा लिटुरा पर एंटीक्सेनोसिस और एंटीबायोसिस अध्ययन किए गए थे। प्रीफरेंस इंडेक्स के आधार पर स्पोडोप्टेरा लिट्रा के खिलाफ 10 सोयाबीन जीनोटाइप पर एंटीक्सेनोसिस अध्ययन किए गए और संदर्भ मुल्यों के आधार पर किस्मों को वर्गीकृत किया। सभी जीनोटाइप के संदर्भ मूल्यों के आधार पर कोई भी जीनोटाइप मजबूत/चरम एंटीक्सेनोसिस नहीं पाया गया। इन चयनित 10 जीनोटाइप पर एंटीबायोसिस अध्ययन में, जीनोटाइप ईएई-23-83 पर पाले गए लार्वा में सबसे कम एडी (68.69%) पाया गया। सबसे कम ईसीआई मूल्य ईएई-23-82 (61.54%) में पाया गया था। सबसे कम ईसीडी मुल्य ईएई-23-84 (82.70%) में पाया गया था। सबसे निचला डब्ल्यूटी। प्रति प्यूपा क्रमशः ईएई-23-80 जीनोटाइप (0.120 मिलीग्राम) में सबसे कम पाया गया

आईआईएसआर 3.1/21 सोयाबीन स्टेम फ्लाई के लिए कैरोमोन और सेक्स फेरोमोन घटकों का आइसोलेशन और पहचान, मेलानोएग्रोमाइज़ा सोजे प्रबंधन

पीआई: लोकेश कुमार मीना को-पीआई: वंगाला राजेश और कमला जयंती

स्टेम फ्लाई मास रीयरिंग के लिए सबसे आकर्षक फसल खोजने के लिए, पांच फसलें उगाई गईं। इस प्रयोग के परिणामों से संकेत मिलता है कि अधिकतम स्टेम टनलिंग सोयाबीन फसल (15.77%) में स्टेम फ्लाई लार्वा द्वारा की गई थी. इसके बाद ब्लैक ग्राम (9.50%) था। बाकी फसल स्टेम टनलिंग निम्नलिखित अवरोही क्रम में पाई गई- ग्रीन ग्राम (2.74%) > गाय मटर (2.61%) > फ्रेंच बीन (2.09%)। स्टेम फ्लाई के खिलाफ प्रतिरोधी और अतिसंवेदनशील सोयाबीन जीनोटाइप की पहचान के लिए 50 सोयाबीन जर्मप्लाज्म की स्क्रीनिंग की गई थी। पचास जीनोटाइप में से, सत्रह जीनोटाइप अर्थात, आईसी 0421898 (45.45% स्टेम टनेलिंग), आईसी 0421898 (57.79% स्टेम टनेलिंग), ईसी 113396 (54.18% स्टेम टनेलिंग), आईसी 469833 (58.74% स्टेम टनेलिंग). आईसी 02128917 (61.80% स्टेम टनेलिंग), आईसी 0501788 (56.94% स्टेम टनेलिंग), आईसी 0118437 (63.31% स्टेम टनेलिंग), ईसी 0251843 (58.39% स्टेम टनेलिंग), आईसी 0262123 (48.26% टनेलिंग), आईसी 0548636 (57.70% स्टेम टनेलिंग), ईसी 0287458 (60.06% स्टेम 00327), आईसी 00330 (49.31% टनेलिंग), आईसी 039570 (46.946.94% स्टेम टनेलिंग), आईसी 011796 (46.054% स्टम टनेलिंग), आईसी 0

डायथिल ईथर को विलायक के रूप में उपयोग करके पुरुषों और महिलाओं दोनों की शारीरिक अस्थिरता को अलग से एकत्र किया गया था। इस उद्देश्य के लिए 50 पुरुष और 50 महिलाएँ ली गईं। कीटों के शरीर की अस्थिरता एकत्र की गई और ओल्फैक्टोमीटर विश्लेषण बायोअसेय. जीसी-एमएस इलेक्टोफिजियोलॉजी अध्ययन किए गए। 5 जीनोटाइप अर्थात F4P21, F3P18, CAT2503, JS 9560 और JS 335 सोयाबीन जीनोटाइप के लीफ वाष्पशील एकत्र किए गए और ओल्फैक्टोमीटर बायोअसे. जीसी-एमएस विश्लेषण और इलेक्ट्रोफिजियोलॉजी अध्ययन किए गए।

व्हाइटफ्लाई के खिलाफ कुछ नए कीटनाशकों की जैव-प्रभावकारिता का मूल्यांकन पीआई: लोकेश कुमार मीणा

नौ नए कीटनाशक अर्थात, थिएमेथोक्कम 25% डब्ल्यूजी, थिएमेथोक्कम 75% एसजी, एकेटामिप्रिड 20% एसपी. एमामैक्टिन बेंजोएट 5% एसजी. क्लोरंट्रानिलिप्रोल 18.5% एससी, थिएक्लोप्रिड 21.7% एससी, प्रोपर्जाइट 57% ईसी, साइंट्रानिलिप्रोल 25% ईसी आदि। तीन वर्षों तक क्षेत्रीय परिस्थितियों में सोयाबीन के प्रमुख कीट-पीडकों के खिलाफ उनकी जैव-प्रभावकारिता के लिए नियंत्रण के साथ परीक्षण किया गया था। उनमें से दो स्प्रे के बाद थायामिथोक्साम 25% wg सबसे प्रभावी पाया गया था, इसके बाद थायामिथोक्साम ७५% SG कीटनाशकों के था।

3.5 बीज गुणवत्ता विशेषताएं

आईआईएसआर 1.35/17: सब्जी सोयाबीन के बीज की जीवंतता

पीआई: पूनम कुचलान, को.पी.आई. : मृणाल कुचलान और मिलिंद रत्नापरखे

सब्जियों के सोयाबीन में बीज अंक्रण क्षमता और अनुकूलन क्षमता का सुधार करना होगा। सब्जियों की किस्म करुणे की बीज अंकुरण क्षमता बहुत कम है (40) %) और यह किस्म तथा फली में बीज भरने की प्रक्रिया बहुत धीमे गति से होती है। इस समस्या को हल करने के लिए वनस्पति किस्म करुणे को संकरित कराया गया | ई. सी. 538828 में तेजी से फली में बीज भरने का गुण है और साथ ही इसमें कई बीमारियों कस प्रति प्रतिरोध क्षमता भी है एवं इसका बीज बड़े आकर का है संकरित के द्वारा ४६० आर.आई.एल. का विकास क्या गया । आरआईएल का मूल्यांकन वनस्पति स्तर पर संवेदी स्वाद के आधार पर किया गया था, जबकि बीज अंकुरण क्षमता के साथ वनस्पति और परिपक्व चरण में रोग प्रतिरोध और बीज का आकार। कारु x ईसी 538828, करुने x वीसी111 और करुने x वीसी109 आबादी को पार करने की पीढी की उन्नति खरीफ 2023 में की गई थी।

वनस्पित सोयाबीन प्रजनन लाइनों को क्षेत्र अंकुरण दर, बड़ी बीज, फली चुनने के लिए दिनों की संख्या, हरे चरण में कुल घुलनशील शुगर सामग्री (%), फली पर प्यूबेसेंस की उपस्थिति/अनुपस्थिति, फली के आकार, हरे चरण में प्रोटीन सामग्री, रोग प्रतिरोध/रोगों के प्रति सिहष्णु और चयनित वनस्पित लाइनों को पकाने के बाद स्वाद का मूल्यांकन किया गया था। क्षेत्र अंकुरण दर के आधार पर

उच्च अंकुरण रेखाओं की पहचान की गई। सब्जी सोयाबीन की अपरिपक्त फलियों को चुना जाता है जब पौधे परिपक्तता के लगभग 80% (R6 और R7 के प्रजनन चरणों के बीच की अवस्था) तक पहुंचते हैं एवं लगभग 65% नमी सामग्री को बनाए रखते हैं। अच्छी अंकुरण रेखाओं में सब्जी प्रकार के मापदंडों का परीक्षण किया जा रहा है जैसे मीठा स्वाद (ऑर्गेनोलेप्टिक), टीएसएस सामग्री, बड़े फली आकार के साथ बोल्ड बीज, प्यूबेसेंस की उपस्थिति और अनुपस्थिति आदि, चार अलग-अलग स्लॉट में हरी फली को चुना गया था जो (70 दिन, 76 दिन, 87 दिन और 92 दिन) बुआई के बाद। करुणे x ईसी 538828 के आरआईएल से, 4 बार चुनने वाली एक पंक्ति और 2 बार चुनने वाली 21 पंक्तियों की पहचान की गई थी जो स्वाद में सबसे मधुर पाई गई थी।

संवेदी स्वाद के आधार पर करुण xवीसी 111 के आरआईएल से 12 पंक्तियों का चयन किया गया था। सभी 12 लाइनों में 80 प्रतिशत से अधिक का उच्च क्षेत्र अंकुरण था और 12 अच्छे स्वाद में से 6 लाइनों में उच्च कुल सॉल्यूबल चीनी सामग्री (> 30% ब्रिक्स) थी। संकर करुणे x वीसी109 की कुल 101 पंक्तियों का मूल्यांकन किया गया और 11 पंक्तियों का चयन अच्छे स्वाद और उच्च क्षेत्र अंकुरण र > 80% के आधार पर तथा रोग संक्रमण से मुक्त के आधार पर किया गया। 11 लाइनों में से, 4 लाइनों में उच्च कुल घुलनशील शर्करा 30 प्रतिशत से ज्यादा बिक्रस पाई गई।

तालिका 3.5.1: सब्जी प्रकार के सोयाबीन के आरआईएल का विवरण (करुणे x ईसी538828)

लक्षण	संख्याएँ
कुल चयनित लाइन बोई गई	359
बहुत अच्छा अंकुरण (> 85%)	58
अच्छा अंकुरण (75-85%)	143
खराब अंकुरण (50-65%)	158
राइजोक्टोनिया एरियल ब्लाइट के लिए अतिसंवेदनशील लाइनें	136
पिकिंग स्टेज (ग्रीन स्टेज) पर 100 बीज का वजन	27.54 - 75.01 ग्राम
फलों की साईज (आकार) मात्रा	5.0-7.5 सेमी

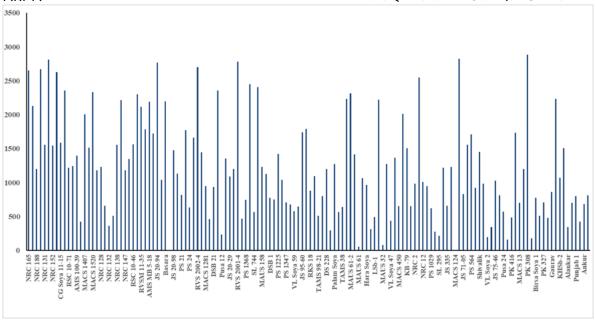
प्यूबरलेंट फैली रौएं (प्यूबेसेंस लगभग अनुपस्थित)	161 पंक्ति /लाइन
रौएं वाली फली	188 पंक्ति
टीएसएस >30% ब्रिक्स	68 लाइनें

तालिका 3.5.2: अध्यन के अनुसार सबसे मीठी सब्जी लाइन के अनुसार बुवाई के 70 दिनों के बाद मापा गया |

		कुल घुलनशील	सब्जी सोयाबीन का प्रोटीन	क्षेत्र अंकुरण दर	फली में रोएं की स्थिति	रोग की उपस्थिति (आरएबी और एंथ्रेक्नोस)
क्र.सं.	लाइन नं।	शर्करा %	प्रतिशत %			
1	6	30	34.84	85	अनुपस्थित	-
2	24	36	30.93	82	अनुपस्थित	-
3	56	36	38.10	71	अनुपस्थित	-
4	59	37	32.48	88	अनुपस्थित	-
5	61	28	30.35	83	अनुपस्थित	-
6	64	28	30.85	90	अनुपस्थित	-
7	128	27	31.66	80	वर्तमान	+
8	134	35	34.10	84	अनुपस्थित	-
9	146	35	38.97	83	अनुपस्थित	-
10	152	30	33.29	83	अनुपस्थित	-
11	177	30	34.91	87	अनुपस्थित	-
12	178	28	30.04	90	अनुपस्थित	-
13	232	24	34.91	85	अनुपस्थित	-
14	303	28	28.13	81	अनुपस्थित	+
15	328	33	34.63	84	वर्तमान	+
16	332	28	31.25	80	वर्तमान	-
17	333	31	28.75	74	अनुपस्थित	-
18	335	35	40.13	79	अनुपस्थित	-
19	355	20	32.50	86	अनुपस्थित	-
20	356	19	33.75	88	अनुपस्थित	-
पी 1	करुणे	33	34.24	45	अनुपस्थित	+
पी 2	EC538828	29	37.35	85	अनुपस्थित	_

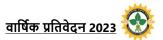
^{*}घुलनशील शर्करा (कुल सॉल्यूबल चीनी/कुल सॉल्यूबल सॉलिड) को मापा गया (सेंसरी स्वाद के बाद)

^{*}टीएसएस के लिए फली तोड़ने की अवस्था = बुवाई के 70-72 दिन बाद



चित्र 3.5.1 सब्जी सोयाबीन की रिल (आर.आई.एल.) आबादी में फली में रोएं की उपस्थिति की भिन्नता

डीयूएस परीक्षण के आईआईएसआर-नोडल केंद्र में संदर्भ संग्रह के रूप में जारी और अधिसूचित किस्मों का रखरखाव


पीआई: मृणाल कुचलान

भारतीय सोयाबीन अनुसन्धान संस्थान, इंदौर में खरीफ 2023 के दौरान एक सौ छप्पन (156) जारी और अधिसूचित सोयाबीन किस्मों बुवाई किया एवं का रखरखाव किया गया था। 20 डीयूएस परीक्षण लक्षणों के लिए सभी किस्मों को चिन्हित किया गया। प्रतिकूल जलवायु स्थिति (अगस्त के दौरान लंबी शुष्क अवधि और सितंबर के दौरान अति वर्षा) के कारण सोयाबीन किस्मों का प्रदर्शन काफी प्रभावित हुआ। जलवायु कारकों का प्रभाव उत्पादन में परिलक्षित होता है। सभी 156 किस्मों का उत्पादन में परिलक्षित होता है। सभी 156 किस्मों का उत्पादन 1.39 किटल से 35.58 किटल तक पाया गया। 30 कि प्रति हैक्टर से अधिक उत्पादन वाली 13 किस्में, 25 से 30 कि प्रति हैक्टर से अधिक 14 किस्में, 20 से 25 कि प्रति हैक्टर के बीच 12 किस्में, 15 से 20 कि प्रति हैक्टर के बीच 34 किस्में, 5 से 10 कि प्रति हैक्टर के बीच 39 किस्में और 5 कि प्रति हैक्टर से कम उत्पादित 15 किस्में पायी गई।

चित्र 3.5.2: खरीफ 2023 के दौरान विभिन्न सोयाबीन किस्मों का प्रदर्शन

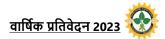
एआईसीआरपी बीज (फसल) और तेल बीज पर बीज हब परियोजना के तहत 2022-23 के दौरान सोयाबीन बीज उत्पादन और विपणन

पीआई: मृणाल कुचलान प्रजनन बीज उत्पादन

70 हेक्टेयर के क्षेत्र में विभिन्न किस्मों जैसे एनआरसी 142, एनआरसी 138, एनआरसी 130, एनआरसी 128, एनआरसी 136, एनआरसी 86 और आरवीएस 24 का सोयाबीन प्रजनक बीज उत्पादन एआईसीआरपी बीज (सीआरओपी) के तहत आईसीएआर-आईआईएसआर, इंदौर, आईसीएआरडीए और किसान क्षेत्र में किया गया था।

तालिका 3.5.3 विभिन्न किस्मों के प्रजनक बीज उत्पादन का विवरण

क्र.सं.	किस्म	उत्पादन (क्विटल)	विक्रय	राजस्व अर्जन
1.	एनआरसी 130	86.6	72.6	9,29,280
2.	एनआरसी 127	38.9	37.0	4,73,600
1.	एनआरसी 128	20	17.0	2,17,600
4.	एनआरसी 138	113.8	95.0	12,16,000
5	एनआरसी 142	212.5	188.7	23,00,800
6.	एनआरसी 136	3.1	2.8	35,840
7	एनआरसी 86	23.1	22.1	2,82,880
8.	आरवीएस-24	7.8	7.7	80,850
9.	एनआरसीएसएल 1	0.8	0.8	10240
10.	एनआरसी 150	3.15	3.15	33,075
	कुल	620.25		55,80,165


आधार, प्रमाणित और टीएल बीज उत्पादन

इंदौर और उज्जैन के प्रगतिशील किसानों के सहयोग से बीज हब परियोजना के तहत एनआरसी 142, एनआरसी 130, एनआरसी 138 और जेएस 20-69 के लिए आधार, प्रमाणित और टी.एल. श्रेणी के बीज उत्पादन किया गया था।

तालिका 3.5.4: इन किस्मों के बीज उत्पादन का विवरण

आधार बीज उत्पादन और विपणन					
क्र.सं.	किस्म	उत्पादन (क्रिटल)			
1.	एनआरसी १४२	21.3			
2.	एनआरसी 138	14.1			
1.	एनआरसी 130	8.7			
4.	जेएस 20-69	111.6			
	कुल	155.7			

प्रमाणित बी	ज उत्पादन और विपणन		
क्र. सं.	किस्म	उत्पादन (क्विटल)	
1.	जेएस 20-69	475.56	
	कुल	475.56	
सत्यापित बी	ज उत्पादन और विपणन		
क्र.सं.	विविधता	उत्पादन (क्विटल)	
1.	जेएस 20-69	66.9	
2.	एनआरसी १४२	75.0	
	कुल	141.9	
	कुल योग	773.2	

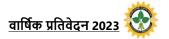
3.6 फसल उत्पादन प्रौद्योगिकियां

आईआईएसआर4.13/17 सोयाबीन आधारित फसल प्रणालियों में संसाधनों के उपयोग दक्षता, मिट्टी की गुणवत्ता और फसल उत्पादकता को बनाए रखने/सुधारने के लिए स्थायी ब्रॉड बेड फ्यूरो के साथ-साथ पारंपरिक जुताई प्रथाओं के तहत अवशेष प्रबंधन प्रथाओं का मूल्यांकन

पीआई: राकेश के. वर्मा, को-पीआई: राघवेंद्र नारगुंड, ए. रमेश, एमपी शर्मा और प्रिंस चोयाल

सोयाबीन आधारित फसल प्रणालियों की पैदावार पर फसल प्रणाली, फसल प्रतिष्ठान की पद्धति और अवशेष प्रबंधन प्रथाओं के प्रभाव का मूल्यांकन करने के लिए रबी 2022-23 और खरीफ, 2023 के दौरान क्षेत्र प्रयोग किया गया था। मुख्य भूखंड में तीन फसल प्रणालियों (सोयाबीन-आलू-गेहूं, सोयाबीन-गेहूं और सोयाबीन-चिकपा) के साथ विभाजन भूखंड डिजाइन में प्रयोग किया गया था और चार फसल प्रतिष्ठान विधि [अवशेषों के साथ स्थायी चौड़ा बिस्तर फरो (पीबीबीएफ + आर), अवशेषों के बिना स्थायी चौड़े बिस्तर फरो (पीबीबीएफ + डब्ल्यूआर), अवशेषों के साथ किसान की प्रथाओं के अनुसार पारंपरिक जुताई (सीटीएफपी + आर), और उप भूखंड में किसानों की प्रथाओं के अनुसार पारंपरिक

जुताई (सीटीएफपी + डब्ल्यूआर)]। सोयाबीन फसल अवशेष का 50% बाद की रबी फसलों के लिए खेत में रखा गया था, चना का 50% और बाद की खरीफ फसल के लिए गेहूं की फसल अवशेष का 30%। रबी 2022-23 के परिणामों से पता चला कि गेहूं (12.4%), आलू (38.8%), आलु के बाद गेहूं (44.6%) और चिकपी (16.6%) की उच्च उत्पादन सीटीएफपी + डब्ल्यूआर (तालिका 3.6.1) की तुलना में पीबीएफ + आर के तहत पंजीकृत थी। जबकि खरीफ 2023 में फसल प्रणाली ने सोयाबीन उत्पादन और लागत में महत्वपूर्ण सुधार को प्रभावित नहीं किया: लाभ अनुपात। हालांकि, सीटीएफपी + डब्ल्युआर (तालिका 3.6.2) की तुलना में पीबीबीएफ + आर के साथ 17.5% सोयाबीन उत्पादन वृद्धि और उच्चतम बी: सी अनुपात (4.04) देखा गया था। इसके अलावा, शेष फंसल प्रणालियों की तुलना में सोयाबीन-आलू-गेहूं प्रणाली के तहत उच्चतम सोयाबीन समकक्ष उत्पादन और शुद्ध रिटर्न पंजीकृत किए गए थे। विभिन्न भूमि विन्यासों में अन्य भूमि विन्यास प्रथाओं (तालिका 3.6.3) की तुलना में पीबीबीएफ+आर के तहत उच्च सोयाबीन समकक्ष उपज, शुद्ध रिटर्न और बी:सी अनुपात पाया गया था।


तालिका 3.6.1 फसल प्रणाली, फसल स्थापना की विधि और रबी मौसम की फसलों की उत्पादन पर अवशेष प्रबंधन प्रथाओं का प्रभाव

उपचार	रबी सीजन फसल की पैदावार (किग्रा/हेक्टेयर)						
	आलू	चिकपी					
भूमि विन्यास और अ	वशेष प्रबंधन प्रथ	<i>ाएं</i>					
पीबीबीएफ + आर	17129 ^a	5868ª	4649ª	1563ª			
पीबीबीएफ +	15501 ^b	5517एबी	3552 ^b	1387 ^b			
डब्ल्यूआर							
सीटीएफपी + आर	15431 ^b	5407 ^b	३३९० ईसा पूर्व	1384 ^b			
सीटीएफपी +	12345°	5222 ^b	3214°	1340 ^b			
डब्ल्यूआर							

तालिका 3.6.2 फसल प्रणाली, फसल स्थापना की विधि और सोयाबीन की उत्पादन और अर्थशास्त्र पर अवशेष प्रबंधन प्रथाओं का प्रभाव

उपचार	बीज उत्पादन (किग्रा/हेक्टेयर)	जैविक उत्पादन (किग्रा/हेक्टेयर)	खेती की लागत (आरएस/एचए)	ग्रॉस रिटर्न (RS/HA)	बी:सी अनुपात				
क्रॉपिंग सिस्टम									
सोयाबीन-आलू गेहूं	3057 ^a	5392ª	30592a	143555a	3.70^{a}				
सोयाबीन-चिकपी	3113 ^a	5484ª	30592a	146151a	3.79 ^a				
सोयाबीन-गेहूं	2914 ^b	5162 ^b	30592a	136866 ^b	3.48 ^b				
फसल स्थापना विधियां। भूगि	फसल स्थापना विधियां भूमि विन्यास (एलसी)								

पीबीबीएफ + आर	3237 ^a	5716 ^a	30187°	152021 ^a	4.04 ^a				
पीबीबीएफ + डब्ल्यूआर	3201 ^a	5671ª	29197 ^d	150314 ^a	4.00^{a}				
सीटीएफपी + आर	2921 ^b	5149 ^b	31987 ^a	137131 ^b	3.29 ^b				
सीटीएफपी + डब्ल्यूआर	2754°	4849°	30997 ^b	129297°	3.17 ^b				
अनोवा	अनोवा								
सीएस	<.0001	<.0001	-	<.0001	<.0001				
नियंत्रण रेखा	<.0001	<.0001	<.0001	<.0001	<.0001				
सीएस*एलसी	0.0069	<.0001	-	0.0044	0.0047				

तालिका 3.6.3 रबी मौसम की फसलों की पैदावार पर फसल प्रणाली, फसल स्थापना की विधि और अवशेष प्रबंधन प्रथाओं का प्रभाव

उपचार	खेती की प्रणाली लागत (₹)	सकल रिटर्न (₹/हेक्टेयर)	नेट रिटर्न (₹/हेक्टेयर)	बी: सी अनुपात	सोयाबीन समतुल्य उत्पादन (टी/एचए)
क्रॉपिंग सिस्टम					
सोयाबीन-गेहूं	61387 ^b	210357 ^b	148971 ^b	3.43 ^a	4.28 ^b
सोयाबीन-आलू गेहूं	164887 ^a	470871 ^a	305984ª	2.86 ^b	10.49 ^a
सोयाबीन-चिकपी	58942°	156727°	97785°	2.68 ^c	3.45°
भूमि विन्यास और अवशेष	म प्रबंधन प्रथाएं				
पीबीबीएफ + आर	93664°	312311 ^a	218647a	3.36a	6.83ª
पीबीबीएफ + डब्ल्यूआर	91830 ^d	281262 ^b	189431 ^b	3.12 ^b	6.11 ^b
सीटीएफपी + आर	99363ª	275136 ^b	175773 ^b	2.76°	5.98 ^b
सीटीएफपी + डब्ल्यूआर	95428 ^b	248565°	153136°	2.71°	5.38°

आईआईएसआर6.10/23 सोयाबीन आधारित फसल प्रणालियों के लिए प्राकृतिक कृषि प्रथाओं का मानकीकरण

पीआई: राघवेंद्र नारगुंड, को-पीआई: आरके वर्मा, ए. रमेश, एमपी शर्मा, एलके मीना, संजीव कुमार और हेमंत एस माहेश्वरी

उच्च रासायनिक गहन कृषि प्रथाओं के कारण रासायनिक उर्वरक की कीमतों, पारिस्थितिक खतरों, भोजन और चारा संदूषण को विभिन्न फसलों और फसल प्रणालियों में प्राकृतिक खेती प्रथाओं के माध्यम से रोका जा सकता है। इसलिए, आईसीएआर-आईआईएसआर, इंदौर ने खरीफ 2023 के दौरान सोयाबीन आधारित फसल प्रणालियों में प्राकृतिक खेती पर क्षेत्र प्रयोग शुरू किया है। यह प्रयोग मुख्य भूखंड में पांच सतत कृषि प्रबंधन प्रथाओं (प्राकृतिक खेती, जैविक खेती, एकीकृत फसल प्रबंधन, संरक्षण कृषि और पारंपरिक कृषि प्रथाओं) और उपभूखंड में तीन फसल प्रणालियों (सोयाबीन-चिकपा, सोयाबीन-गेहूं और सोयाबीन-सरसों) के साथ विभाजित भूखंड डिजाइन में किया गया था। प्राकृतिक खेती के तहत पारिस्थितिक दृष्टिकोणों के एक सेट को नियोजित किया गया है, जिसमें बीजामृता के साथ बीज उपचार, घानाजीवमृता का मिट्टी अनुप्रयोग, जीवमृता का फोलियो अनुप्रयोग, गर्मियों में धांचा के साथ हरी खाद शामिल है, मिल्वंग, आवश्यकता आधारित कुदाल और अग्निस्त स्प्रे शामिल हैं। प्रयोग प्रारंभिक वर्ष में है और फिर भी हम सोयाबीन और उसके बाद की फसलों के लिए प्राकृतिक खेती प्रथाओं को अनुक्रम में मानकीकृत कर रहे हैं (चित्र 3.6.1)।

Beejamritha

Jeevamritha

Ghanajeevamrith

Crop residue mulching

Agniastra

Natural farming experimental field overview

चित्र 3.6.1 सोयाबीन आधारित फसल प्रणालियों के तहत पालन की जाने वाली प्राकृतिक कृषि प्रथाएं

आईआईएसआर9.11/20 सोयाबीन गेहूं फसल प्रणाली के तहत पोषक तत्वों की गतिशीलता और खिनज बायोफोर्टिफिकेशन पर राइजोबैक्टीरिया (माइक्रोबियल कंसोर्टिया) और एएम कवक को बढ़ावा देने वाले संभावित पौधों की वृद्धि का फील्ड मुल्यांकन

पीआई: ए. रमेश, सीओ-पीआई: एमपी शर्मा और राघवेंद्र नारगुंड

सोयाबीन-गेहूँ प्रणाली के तहत पैदावार, पोषक तत्वों के सेवन और मिट्टी उपलब्ध पोषक तत्व सामग्री में परिवर्तन पर एएम कवक के साथ होनहार पौधे की वृद्धि राइजोबैक्टीरिया के सह-टीकाकरण के साथ एक क्षेत्र प्रयोग किया गया था। रिसॉल्ट ने पाया कि, बैसिलस

आर्यभट्टाई + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ के साथ माइक्रोबियल इनोक्यूलेशन ने स्ट्रॉ में मैक्रो और माइक्रोन्यूट्रिएंट्स के अपटेक में काफी वृद्धि की (तालिका 3.6.4)। बेसिलस आर्यभट्टै + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ, बर्कहोल्डेरिया आर्बोरिस + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ और बेसिलस आर्यभट्टै + एएमएफ दोनों सोयाबीन और गेहूं में उच्च बीज उत्पादन देखी गई (तालिका 3.6.5)। बेसिलस आर्यभट्टै + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ और बर्कहोल्डिरिया आर्बोरिस + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ और वर्कहोल्डिरिया आर्बोरिस + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ (तालिका 3.6.6) के टीकाकरण के साथ मिट्टी उपलब्ध पोषक तत्वों में काफी वृद्धि हुई थी।

तालिका 3.6.4 सोयाबीन के भूसे में पोषक तत्व सेवन में परिवर्तन पर पीजीपीआर और एएमएफ

उपचार	एन (केजी/एचए)	पी (केजी/एचए)	क (केजी/एचए)	एस (केजी/एचए)	जेडएन (जी/एचए)	एफई (जी/एचए)
नियंत्रण	11.7 ^g	2.19e	42.26°	4.45डी	71.95 ^g	246.80 ^j
बुर्कहोल्डिनिया अर्बोरिस	16.3सीडी	2.51 ^d	51.81एबी	5.37 ईसा पूर्व	92.78ईएफ	288.95जीएच
बैसिलस आर्यभट्ट	15.3 डीई	२.८५ ईसा पूर्व	53.33एबी	4.76सीडी	103.61 सीडी	297.70एफजी
ब्रैडिराइजोबियम लियोनिंगेंस	13.5 ^f	2.19 ^e	40.84°	4.07 ^e	58.34 ^h	264.69 ⁱ
Burkholedia Arboris + Bradyrhizobium Lioningence	15.4डीई	2.79सीडी	53.83ª	5.35 ईसा पूर्व	95.90डीईएफ	303.19ईएफ

बैसिलस आर्यभट्ट + ब्रैडिरिजोबियम लियोनिंगेंस	14.0ईएफ	2.79सीडी	46.09 ईसा पूर्व	5.39 ईसा पूर्व	100.86 सीडीई	317.76सीडी
Burkholedia Arboris + AMF	18.6एबी	3.18 ^a	50.31एबी	4.59डी	106.26°	311.93डी
बैसिलस आर्यभट्ट +एएमएफ	17.1 ईसा पूर्व	3.34 ^a	51.94एबी	4.61 डी	116.20 ^b	332.58 ^b
ब्रैडिराइजोबियम लियोनिंगेंस +एएमएफ	12.9 एफजी	2.51 ^d	42.88°	4.17 डी	87.22 ^f	281.61 ^h
Burkholderia Arboris + Bradyrhizobium Lioningence + AMF	15.2डी	3.11एबी	50.56एबी	6.67ª	116.06 ^b	३२६.४८ ईसा पूर्व
बैसिलस आर्यभट्ट + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ	20.0ª	3.36ª	52.03एबी	5.86 ^b	126.46ª	346.77ª
एलएसडी (पी=0.05)	0.66	0.29	7.32	0.52	9.72	10.59

डेटा का मतलब चार प्रतिकृतियों के मूल्य हैं; एक ही पंक्ति में अलग-अलग अक्षरों के साथ मतलब फिशर एलएसडी के अनुसार पी = 0.05 पर काफी भिन्न होता है

तालिका 3.6.5 सोयाबीन और गेहूं (किग्रा/हेक्टेयर) की बीज उत्पादन पर पीजीपीआर और एएमएफ

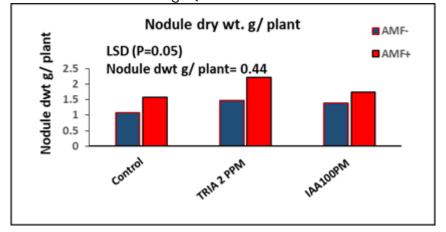

उपचार	सोयाबीन	गेहूँ
नियंत्रण	1800e	४५९७७सीडी
बुर्कहोल्डिनिया अर्बोरिस	१९५७ ईसा पूर्व	4775बीसीडी
बैसिलस आर्यभट्ट	1992बीसीडी	4909एबी
ब्रैडिराइजोबियम लियोनिंगेंस	1847 ਤੀ	4531 ^d
Burkholedia Arboris + Bradyrhizobium Lioningence	1901CDE	4855एबीसी
बैसिलस आर्यभट्ट + ब्रैडिरिजोबियम लियोनिंगेंस	2039एबीसी	5008एबी
Burkholedia Arboris + AMF	1986बीसीडी	4809एबीसी
बैसिलस आर्यभट्ट +एएमएफ	2066एबी	4979एबी
ब्रैडिराइजोबियम लियोनिंगेंस +एएमएफ	1837ਤੀ	4751बीसीडी
Burkholderia Arboris + Bradyrhizobium Lioningence +	2044एबीसी	4868एबी
AMF		
बैसिलस आर्यभट्ट + ब्रैडिरिजोबियम लियोनिंगेंस + एएमएफ	2168a	5044ª
एलएसडी (पी=0.05)	160.86	265.87

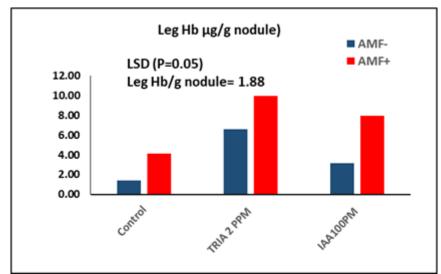
ें डेटा का मतलब चार प्रतिकृतियों के मूल्य हैं; एक ही पंक्ति में अलग-अलग अक्षरों के साथ मतलब फिशर एलएसडी के अनुसार पी = 0.05 पर काफी भिन्न होता है

तालिका 3.6.6 उपलब्ध पोषक तत्व सामग्री (पीपीएम) में परिवर्तन पर पीजीपीआर और एएमएफ

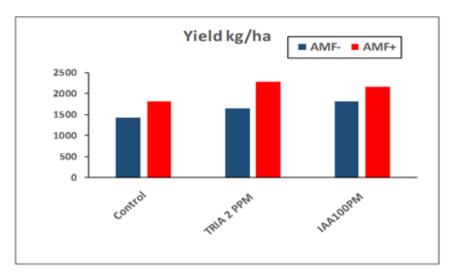
उपचार	एन	पी	क	एस	जेडएन	एफई
नियंत्रण	114.38 ^d	8.64 ^d	251.13 ^f	6.51 ^g	0.57^{e}	7.८८
						ईसा पूर्व

बुर्कहोल्डिनिया अर्बोरिस	140.63	10.04 ^c	260.38ईएफ	8.09 ^b	0.74	3.42a
पुष्याराम्या अवाररा	ईसा पूर्व	10.01	200.502247	0.05	बीसीड <u>ी</u>	3.12
बैसिलस आर्यभट्ट	146.25	10.1°	295.5ª	8.92ª	0.8एबीसी	3.22एबी
	ईसा पूर्व					
ब्रैडिराइजोबियम लियोनिंगेंस	146.25	8.86^{d}	265.13	6.17 ^h	$0.57^{\rm e}$	2.69^{c}
	ईसा पूर्व		डीईएफ			
Burkholedia Arboris +	155.63एबी	10.68ईसा	270.5 सीडीई	6.76 ^f	0.69^{d}	२.९६
Bradyrhizobium Lioningence		पूर्व				ईसा पूर्व
बैसिलस आर्यभट्ट + ब्रैडिरिजोबियम	163.13 ^a	11.29एबी	२८० ईसा पूर्व	7.72 ^c	0.81एबीसी	3.36^{a}
लियोनिंगें स						
Burkholedia Arboris + AMF	136.88°	10.67	285.25एबी	6.82 ^f	0.72 सीडी	3.48 ^a
		ईसा पूर्व				
बैसिलस आर्यभट्ट +एएमएफ	155.63एबी	11.12एबी	296.75ª	7.17 ^e	0.83एबी	3.51 ^a
ब्रैडिराइजोबियम लियोनिंगेंस	155.63एबी	8.98 ^d	261.88ईएफ	5.86 ⁱ	0.59e	२.९३
+एएमएफ			, ,			ईसा पूर्व
Burkholderia Arboris +	153.75एबी	11.54 ^a	284.5एबीसी	6.78 ^f	0.81एबीसी	3.47 ^a
Bradyrhizobium Lioningence +						
AMF						
बैसिलस आर्यभट्ट + ब्रैडिरिजोबियम	163.13 ^a	11.85 ^a	277.88बीसीडी	7.45 ^d	0.83^{a}	3.5a
लियोनिंगेंस + एएमएफ						
0 0						
एलएसडी (पी=0.05)	15.83	0.78	14.09	0.18	0.09	0.35


डेटा का मतलब चार प्रतिकृतियों के मूल्य हैं; एक ही पंक्ति में अलग-अलग अक्षरों के साथ मतलब फिशर एलएसडी के अनुसार पी = 0.05 पर काफी भिन्न होता है


आईआईएसआर 3.12/20 राइजोस्फीयर में बेहतर एएमएफ सिंबियोसिस के साथ सोयाबीन की वृद्धि, वृद्धि, उत्पादन के लिए फाइटोहार्मीन और एएमएफ का इंटरैक्शन प्रभाव

पीआई: एमपी शर्मा, को-पीआई: प्रिंस चोयाल और ए.

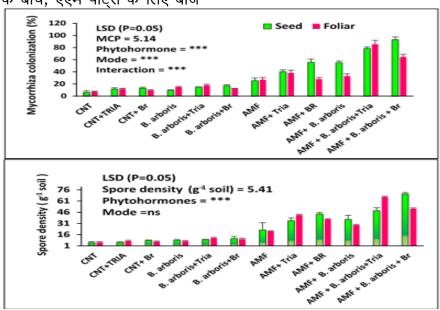

सोयाबीन की बढ़ी हुई नोड्यूलेशन और उत्पादन के लिए फाइटोहार्मोन और एएमएफ का जवाब

खरीफ 2023 के दौरान, ट्रायकोन्टेनॉल (ट्राया 2 पीपीएम) और आईएए (100 पीपीएम) की प्रतिक्रिया का मूल्यांकन एएमएफ टीकाकरण के साथ और उसके बिना बुवाई (डीएएस) के 25 दिनों के बाद फोलियो आवेदन के रूप में किया गया था। परिणामों से पता चला कि, एएम इनोक्यूलेशन के साथ फाइटोहार्मीन ट्राया 2पीपीएम में नोड्यूल बायोमास, नोड्यूल और अनाज उत्पादन में लेघमोग्लोबिन सामग्री काफी अधिक पाई गई (चित्र 3.6.2 और 3.6.3)। फाइटोहार्मीन के बावजूद, एएम इनोक्यूलेशन ने सोयाबीन की नोड्यूलेशन और अनाज की उत्पादन को बढ़ाया है। हालांकि, 25 डीएएस में लागू ट्राइकोनटेनॉल (2 पीपीएम) ने नोड्यूलेशन को और बढाया और उत्पादन को महत्वपूर्ण रूप से बढाया।

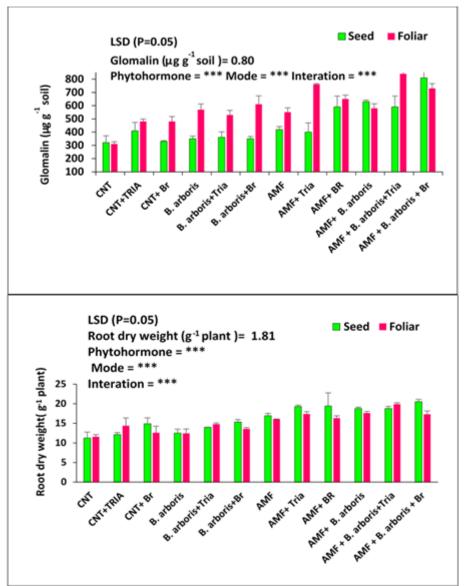
चित्र 3.6.2 ट्राइकोन्टेनॉल और आईएए (फोलियर एप्लिकेशन) का प्रभाव और सोयाबीन नोड्यूलेशन पर एएम कवक का मूल्यांकन सोयाबीन के फूलों के चरण में किया गया (कल्टीवेयर जेएस 20-69)

चित्र 3.6.3 ट्राइकंटेनॉल और आईएए (फोलियर अनुप्रयोग) का प्रभाव और सोयाबीन (कल्टीवेयर जेएस 20-69) के अनाज की पैटावार पर एएम फंगी

ज्वार पर मिट्टी आधारित कार्बनिक पॉटिंग सब्सट्रेट्स में एएम फंगी के उत्पादन में वृद्धि के लिए फाइटोहार्मोन के साथ बी आर्बोरिस के सह-टीकाकरण प्रभाव का आकलन करना


चुनिंदा फाइटोहार्मीन के साथ सोरघम पर एक पॉट प्रयोग किया गया था और एएम फंगी के साथ बेसिलस आर्बोरिस के सह-टीकाकरण प्रभाव का मूल्यांकन खेल घनत्व, मायकोराइजल उपनिवेशीकरण प्रतिशत (एमसीपी) और मृदा कुल ग्लोमिलन (टी-जीआरपी) के संदर्भ में किया गया था। एएम फंगी इनोक्यूलेटेड कार्बनिक सब्सट्रेट्स के लिए फाइटोहार्मीन के साथ और उसके बिना बी आर्बोरिस के सह-इनोक्यूलेशन ने एएम रूट कॉलोनाइजेशन (एमसीपी) (चित्र 3.6.4) को बढावा

दिया है। हालांकि, तुलनात्मक रूप से फाइटोहार्मीन एप्लिकेशन और बी आर्बोरिस के साथ एएम-पॉट्स के सह-टीकाकरण ने एएम फंगी बायोमास को उत्तरोत्तर बढ़ाया है। इसके अलावा, फाइटोहार्मीन के बावजूद, बी. आर्बोरिस का एएम पॉट्स में सह-टीकाकरण अधिक प्रभावी पाया गया। सभी फाइटोहोर्म्स के बीच, एएम पॉट्स के लिए बी आर्बोरिस संयोजन के साथ बीज उपचार के माध्यम से लागू ट्राया (1पीपीएम) दूसरों की तुलना में सबसे प्रभावी और बेहतर पाया गया और अन्य उपचारों पर माइकोरिजा उत्पादन में काफी वृद्धि हुई है। इनोक्यूलेटेड पॉट्स (एएमएफ, एएमएफ + बी. आर्बोरिस) का एएमएफ उपनिवेशीकरण 25% से 55% तक है जहां ट्राया एप्लिकेशन और सह-इनोक्यूलेशन


पॉटस ने उच्च उपनिवेशीकरण दिखाया जो 64% से 93% तक है। हालांकि, आवेदन के तरीके की परवाह किए बिना, बीज उपचार आवेदन फोलियो की तुलना में अधिक प्रभावी पाया गया। एएमएफ इनोक्यूलेशन के साथ फाइटोहार्मीन (बीज उपचार या फोलियर) के साथ बी आर्बोरिस के सह-इनोक्युलेशन ने खेल घनत्व को काफी प्रभावित किया है। फाइटोहार्मोन के प्रकार के बावजद आवेदन का तरीका खेल के घनत्व को प्रभावित करता है लेकिन गैर-महत्वपूर्ण रूप से अलग पाया जाता है। यद्यपि जब फाइटोहार्मोन (टाय) ने एएमएफ + बी के साथ बीज उपचार के रूप में आवेदन किया था। आर्बोरिस ने तलनात्मक रूप से उच्च खेल घनत्व दिखाया और नियंत्रण संयंत्रों पर घनत्व काफी अधिक था। कुल मिलाकर, दोनों शर्तों के तहत, बी. आर्बोरिस के सह-टीकाकरण ने एएम उत्पादन को बढ़ाने के लिए अनकल शर्तें प्रदान की हैं।

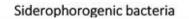
सामान्य तौर पर, B. Arboris phytohormones के साथ AM बर्तनों में टीकाकरण ने गैर-टीका पौधों की तलना में मिट्टी में ग्लोमालिन को काफी बढा दिया है। हालांकि, फाइटोहार्मीन का प्रभाव आवेदन के तरीके के साथ भिन्न था। दोनों हार्मोन के बीच, एएम पॉटस के लिए बीज

उपचार के रूप में लागू होने पर ट्राया ने तुलनात्मक रूप से उच्च ग्लोमालिन दिखाया। बी. आर्बोरिस इनोक्युलेशन (586.39 से 574.63 ग्राम -1 मिट्टी) के बावजूद एएमएफ बर्तनों में ग्लोमालिन की मात्रा काफी अधिक थी, लेकिन नियंत्रण सहित गैर-एएमएफ बर्तनों में (4.57 ग्राम ग्राम -1 मिट्टी) काफी कम हो गई (चित्र 3.6.5)। फिर भी, सह-टीकाकरण का तरीका, बी, आर्बोरिस + एएमएफ + ट्राया, बर्तनों ने कुल ग्लोमलिन (810 µg g g -1 मिट्टी) में जबरदस्त वृद्धि की है। इनोक्यूलेशन उपचार और अनुप्रयोग के तरीके के साथ फाइटोहार्मीन के अंतःक्रिया प्रभाव कुल ग्लोमालिन के लिए महत्वपूर्ण पाए गए। हालांकि, फाइटोहार्मीन के प्रकार के बावजुद, बीज उपचार अनुप्रयोग ने फोलियर पर ग्लोमालिन उत्पादन में वृद्धि की है लेकिन प्रतिक्रिया महत्वपूर्ण नहीं थी। रूट बायोमास भी उपचार संयोजनों से प्रभावित हुआ है। एएमएफ + बी. आर्बोरिस + बीआर के साथ बीज इनोक्यूलेशन। (20.51 मि.ग्रा.-1 संयंत्र) ने एएमएफ + बी. आर्बोरिस + टाया (18.77 मि.ग्रा.-1 संयंत्र) संयंत्रों की तुलना में अधिक जड़ बायोमास का उत्पादन किया (चित्र 3.6.5)।

चित्र 3.6.4 एएम रूट उपनिवेशीकरण पर फाइटोहार्मोन और बी आर्बोरिस की एकीकृत प्रतिक्रिया और पतवार के साथ संशोधित जैविक सब्सटेट में उगाए जाने वाले ज्वार के पौधों में स्पोर घनत्व और निर्जलित स्थितियों के तहत। [डेटा तीन प्रतिकृतियों का साधन है। वर्टिकल बार साधनों के मानक विचलन का प्रतिनिधित्व करते हैं। एलएसडी: डंकन एस मल्टीपल रेंज टेस्ट का उपयोग करके उपचार की तुलना करने के लिए पी = 0.05 पर कम से कम महत्वपूर्ण अंतर।

चित्र 3.6.5 ग्लोमालिन पर फाइटोहार्मोन और बी आर्बोरिस की एकीकृत प्रतिक्रिया और हॉल के साथ संशोधित जैविक सब्सट्रेट में उगाए जाने वाले ज्वार पौधों में जड़ शुष्क वजन और निर्जलित स्थितियों के तहत। [डेटा तीन प्रतिकृतियों का साधन है। वर्टिकल बार साधनों के मानक विचलन का प्रतिनिधित्व करते हैं। एलएसडी: डंकन एस मल्टीपल रेंज टेस्ट का उपयोग करके उपचार की तुलना करने के लिए पी = 0.05 पर कम से कम महत्वपूर्ण अंतर]

आईआईएसआर6.9/17 सोयाबीन में बैक्टीरियल मीडिएटेड सल्फर बायोअवेलबिलिटी


पीआई: हेमंत एस. महेश्वरी, सीओ-पीआई: एमपी शर्मा, ए. रमेश, राघवेंद्र नारगुंड और संजीव कुमार बिश्रामपुर (सूरजपुर), भटगांव (सूरजपुर), गारेपेल्मा (आईवी) (रायगढ़) और जम्पाली (रायगढ़) में दक्षिण-पूर्वी कोल फील्ड लिमिटेड (एसईसीएल) में स्थित कोयला खदानों की खोज सल्फर और लोहे के बैक्टीरिया के स्रोतों के लिए की गई थी। इसके अलावा, एनएमडीसी बैलाडिला, दंतेवाड़ा की टाटापानी, शंकरगढ़ और लौह खदानों के गर्म पानी के झरनों को भी सल्फर और लौह बैक्टीरिया के स्रोतों के लिए लिया गया था। बैक्टीरिया को

मिट्टी, पानी, कोयला, कीचड़ और कृषि मिट्टी के नमूनों से अलग किया गया था। इसके अलावा, एक केमोऑटोट्रॉफिक और 28 हेटरोट्रोफिक बैक्टीरिया को अलग किया गया है जो मौलिक सल्फर को सल्फेट में परिवर्तित करता है। दो एकाधिक पौधों की वृद्धि को बढ़ावा (पीजीपी) बैक्टीरिया को अलग किया गया था, जो फाइटेट खनिजीकरण, फॉस्फोरस घुलनशीलकरण, साइडरोफोर उत्पादन और जिंक घुलनशीलता में मदद करता है। दो पोटेशियम घुलनकारी और सात जिंक घुलनशील बैक्टीरिया को विभिन्न आवासों से अलग किया गया था (चित्र 3.6.6)।

Multiple plant growth promoting bacteria

चित्र 3.6.6 सल्फर ऑक्सीकरण और पौधों की वृद्धि कोयला खान, गर्म पानी के झरनों और लोहे की खानों से अलग बैक्टीरिया को बढ़ावा देना

4. प्रौद्योगिकी स्थानांतरण

आईआईएसआर8.17/20 सोयाबीन के टीओटी के लिए आईसीटी उपकरणों और मीडिया का विकास और मुल्यांकन

पीआईं: दुपारे बीयू को-पीआई: सिवता कोल्हें आईसीटी पहलों के तहत, संस्थान विभिन्न हितधारकों के बीच सूचना और इंटरैक्शन / फीडबैक प्रौद्योगिकियों के प्रवाह के लिए छह सोशल मीडिया जैसे यूट्यूब चैनल, फेसबुक पेज, इंस्टाग्राम, ट्विटर, टेलीग्राम चैनलों और व्हाट्सएप समूहों का उपयोग कर रहा है। विभिन्न विषयों वाले

विस्तार गतिविधियां और प्रशिक्षण कार्यक्रम आयोजित किए गए

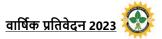
पीआई: दुपारे बी.यू.

समय-समय पर, किसान और अन्य सोयाबीन हितधारक क्षमता निर्माण और तकनीकी जानकारी के उन्नयन के लिए संस्थान का दौरा करते हैं। दौरे आमतौर पर एजेंसियों विशेष रूप से राज्य कृषि विभागों, गैर सरकारी संगठनों, कृषि विस्तार प्रशिक्षण केंद्रों, राष्ट्रीयकृत बैंकों आदि द्वारा कार्यान्वित चल रही योजनाओं का एक हिस्सा होते हैं। अपनी यात्रा के दौरान, उन्हें अपने क्षेत्र के लिए विकसित और अनुशंसित संस्था

गत पृष्ठभूमि और प्रौद्योगिकियों के बारे में शिक्षित किया गया और इसके बाद प्रासंगिक मुद्दों पर बातचीत की गई। इसके अलावा, संस्थान आईसीएआर मुख्यालय के निर्देश के अनुसार विभिन्न अवसरों पर ऑनलाइन कृषि सेमिनार और अन्य कार्यक्रम आयोजित कर रहा है। संस्थान ने वर्ष 2023 के दौरान संस्थान का दौरा करने वाली 256 महिला कुल 214 वीडियो तैयार किए गए हैं और संस्थान के यूट्यूब चैनल पर अपलोड किए गए हैं और उन्हें अन्य सोशल मीडिया पर साझा करके लोकप्रिय बनाया गया है। प्लेलिस्ट में आईसीएआर-मध्य भारत समाचार, साप्ताहिक सोयाबीन सलाहकार, प्रगतिशील सोयाबीन उत्पादकों और सोया वैज्ञानिकों के साथ सोया संवाद, आईसीएआर-आईआईएसआर, इंदौर द्वारा विकसित सोयाबीन किस्मों के साथ-साथ अन्य एआईसीआरपीएस केंद्रों द्वारा भी शामिल हैं।

किसानों सहित 1763 किसानों की तकनीकी जानकारी को अद्यतन करते हुए 43 एकदिवसीय प्रशिक्षण कार्यक्रम सफलतापूर्वक आयोजित किए हैं (तालिका 4.1)। महाराष्ट्र राज्य कृषि विभाग के अनुरोध के अनुसार, एग्री-बिजनेस इंक्यबेशन सेंटर एसएमएआरटी परियोजना (तालिका 4.2) के माध्यम से महाराष्ट्र के विभिन्न जिलों से संबंधित किसान उत्पादक संगठनों के लिए सोया फूड प्रोसेसिंग प्रशिक्षण और खाद्य उत्पादों के उपयोग पर 12 विशेष प्रशिक्षण कार्यक्रम आयोजित किए हैं। इसके अलावा, 2023 के दौरान छह ऑनलाइन कार्यक्रम और वेबिनार आयोजित किए गए हैं. जिनके माध्यम से 4270 दर्शकों को सोयाबीन उत्पादन के तरीकों और साधनों और कीट-पतंगे और बीमारियों से सुरक्षा के अलावा राष्ट्रीय महत्व की संस्थागत गतिविधियों, कार्यक्रमों और मुद्दों के बारे में अवगत कराया गया है (तालिका ४.३)।

तालिका 4.1: बेहतर सोयाबीन उत्पादन प्रौद्योगिकी पर एक दिवसीय किसान प्रशिक्षण कार्यक्रम


क्र.सं	तिथि	जिला	राज्य	पुरूष	महिला	कुल योग
1.	10.01.23	कोटा	राजस्थान Rajasthan	60	0.00	60
2.	09.02.23	इंदौर	मध्य प्रदेश	35.	0.00	35.
3.	10.02.23	उज्जैन	मध्य प्रदेश	60	0.00	60
4.	14.02.23	मंदसौर	मध्य प्रदेश	10 Nos.	60	50
5.	14.03.23	कोटा	राजस्थान Rajasthan	28	0.00	28
6.	17.3.23	हिंगोली	महाराष्ट्र	164	0.00	164
7.	24.03.23	यवतमाल	महाराष्ट्र	12 Nos.	0.00	12 Nos.
8.	27.03.23	बीड	महाराष्ट्र	100	0.00	100
9.	30.03.23	सी.जी.	छत्तीसगढ़	50	0.00	50
10		0	मध्य प्रदेश			
Nos.	30.03.23	अलीराजपुर		20	0.00	20
11.	01.04.23	सी.जी.	छत्तीसगढ़	50	0.00	50

12			छत्तीसगढ़			
Nos.	03.04.23	सी.जी.	Othtrip	50	0.00	50
13.	22.06.23	सोलापुर	महाराष्ट्र	16	0.00	16
14.	21.08.23	उज्जैन	मध्य प्रदेश	5.	0.00	5.
16	22.08.23	उज्जैन	मध्य प्रदेश	60	0.00	60
16	22.08.23	सीहोर	मध्य प्रदेश	0.00	38	38
16	23.08.23	इंदौर	मध्य प्रदेश	60	0.00	60
16	23.09.23	बीड	महाराष्ट्र	0.00	50	50
20	25.08.23	अमरावती	महाराष्ट्र	50	50	100
20	26.08.23	हरदा	मध्य प्रदेश	23	0.00	23
20	04.09.23	यवतमाल	महाराष्ट्र	9.	0.00	9.
22.	05.09.23	विदिशा	मध्य प्रदेश	22.	0.00	22.
23.	05.09.23	उज्जैन	मध्य प्रदेश	50	0.00	50
23	08.09.23	इंदौर	मध्य प्रदेश	60	0.00	60
25.	12.09.23	होशंगाबाद	मध्य प्रदेश	25.	0.00	25.
28	12.09.23	इंदौर	मध्य प्रदेश	50	0.00	50
28	12.09.23	खंडवा	मध्य प्रदेश	60	0.00	60
28.	14.09.23	उज्जैन	मध्य प्रदेश	0.00	60	60
28	26.09.23	उज्जैन	मध्य प्रदेश	43	0.00	43
30	26.09.23	कोटा	राजस्थान	32	0.00	32
32	26.09.23	झाबुआ	महाराष्ट्र	60	0.00	60
32	29.09.23	खरगोन	मध्य प्रदेश	35.	0.00	35.
32	04.10.23	छोटा उदयपुर	गुजरात	0.00	60	60
35	05.10.23	शाजापुर	मध्य प्रदेश	60	0.00	60
35.	09.10.23	वलसाड	गुजरात	70	0.00	70
38	05.10.23	राजसमंद	राजस्थान Rajasthan	455	0.00	455
38	05.10.23	भीलवाड़	राजस्थान Rajasthan	50	0.00	50
38.	11.10.23	साबरकांठा	गुजरात	50	0.00	50
38	12.10.23	उज्जैन	मध्य प्रदेश	50	0.00	50
60	15.12.23	उज्जैन	मध्य प्रदेश	60	0.00	60
41.	18.12.23	सांबाजीनगर	महाराष्ट्र	10 Nos.	0.00	10 Nos.
43	26.12.23	सतारा	महाराष्ट्र	10 Nos.	0.00	10 Nos.
45	27.12.23	हिंगोली	महाराष्ट्र	60	0.00	60
		कुल योग		1507	256	1763

तालिका 4.2: ए.बी.आई. द्वारा आयोजित खाद्य उत्पाद के लिए सोया खाद्य प्रसंस्करण तकनीकों और सोया के उपयोग पर तीन दिवसीय प्रशिक्षण कार्यक्रम। आईसीएआर-आईआईएसआर, इंदौर का बिजनेस इनक्यूबेशन सेंटर

क्र. सं.	प्रशिक्षणार्थी/संस्था/एफपीओ का नाम	तिथि	प्रतिभागी की संख्या
1.	जिला कार्यान्वयन इकाई (एसएमएआरटी)	1-3 फरवरी	48
	सांगली, महाराष्ट्र के एफपीओ	2023	
2.	जिला कार्यान्वयन इकाई (एसएमएआरटी)	१३-१५ मार्च	25.
	जालना, महाराष्ट्र के एफपीओ	2023	
3.	सतारा, महाराष्ट्र की जिला कार्यान्वयन इकाई	16-18 March 2023	50
	(एसएमएआरटी) एफपीओ		

4.	परभणी, महाराष्ट्र की जिला कार्यान्वयन इकाई	24-25 मार्च	30
	(एसएमएआरटी) एफपीओ	2023	
5.	जिला कार्यान्वयन इकाई (एसएमएआरटी)	27-29 मार्च	90%
	ओस्मानाबाद, महाराष्ट्र के एफपीओ	2023	
6.	अमरावती, महाराष्ट्र की जिला कार्यान्वयन इकाई	11-13 अप्रैल	25.
	(एसएमएआरटी) एंफपीओ	2023	
7.	अमरावती, महाराष्ट्र की जिला कार्यान्वयन इकाई	10-12 October 2023	25.
	(एसएमएआरटी) एंफपीओ		
8.	जिला कार्यान्वयन इकाई (एसएमएआरटी)	30 Oct -01 Nov 2023	60
	ओस्मानाबाद, महाराष्ट्र के एफपीओ		
9.	जिला कार्यान्वयन इकाई (एसएमएआरटी)	28-30 November 2023	455
	वाशीम, महाराष्ट्र के एफपीओ		
10 Nos.	यवतमाल, महाराष्ट्र की जिला कार्यान्वयन इकाई	19-21 दिसंबर	48
	(एसएमएआरटी) एफपीओ	2023	
11.	परभणी, महाराष्ट्र की जिला कार्यान्वयन इकाई	27-28 December 2023	20
	(एसएमएआरटी) एफपीओ		
12 Nos.	लातूर, महाराष्ट्र की जिला कार्यान्वयन इकाई	4-5 January 2024	60
	(एसएमएआरटी) एफपीओ		
	कुल योग		486

तालिका ४.३: २०२३ के दौरान आयोजित ऑनलाइन कार्यक्रमों और सेमिनार का विवरण

क्र. सं.	शीर्षक	तिथि	प्रतिभागियों की
			संख्या
1.	आईएनटी के दौरान माननीय प्रधानमंत्री का वेबकास्ट।	18.03.2023	520
	मिलेट कॉन्फ 18 मार्च 2023		
2.	24 मई 2023 को प्री-खुरीफ ऑनलाइन सेमिनार सोयाबीन	24.05.2023	1200
	की खेती, उन्नात किसमैन, बीज अंकुरण, बीजोपचार एवं		
	बोनी पूर्व सस्य क्रिया		
3.	ऑनलाइन वेबिनार: 21.08.23 को गाजर घास उन्मूलन पर	21.08.2023	970
	जागरूकता और सोया फसल की स्थिति पर बातचीत		
4.	5 दिसंबर 2023 को पद्मश्री जनक मैकगिलिगन के साथ	05.12.2023	210
	विश्व मृदा दिवस		
5.	23 दिसंबर 2023 को राष्ट्रीय किसान दिवस का आयोजन	23.12.2023	1300
	किया गया। एनआरसी 150, 181 और 165 के बीज 1300		
	किसानों को वितरित किए गए		
6.	इंदौर में कृषि पर जी-20 शिखर सम्मेलन के लिए	09.02.2023	70
	जागरूकता कार्यक्रम		
	कुल प्रतिभागी		4270

तालिका 4.4: कृषि प्रदर्शनियों में भागीदारी

क्र.सं	कार्य वृतांत	स्थान	तिथियाँ
1.	मालवा किसान मेला	कृषि महाविद्यालय, इंदौर	24-26 May 2023
2.	हैदराबाद में आईसीवीओ के दौरान कृषि प्रदर्शनी	ऑडिटोरियम, पीजेटीएसएयू, हैदराबाद	18-20 January 2023

3.	शाइनिंग मध्य प्रदेश	कालिदास अकादमी,	18-20 January 2023
		उज्जैन	

अनुसूचीत जाति उप-योजना के तहत किसान प्रशिक्षण और इनपुट वितरण

नोडल अधिकारी: राकेश कुमार वर्मा, को-नोडल अधिकारी: बीयू। दुपारे, प्रिंस चोयाल और राघवेंद्र नारगुंड

अनुसूचित जाति उप योजना (एससीएसपी) के तहत संगठित किसान प्रशिक्षण और इनपुट वितरण कार्यक्रमका आयोजन। कार्यक्रम के दौरान, पात्र लाभार्थियों के बीच सोयाबीन बीज, सब्जी किट, गेहूं बीज, एनपीके उर्वरक, प्लांट ग्रोथ प्रोमोटिंग रिजोबैक्टीरिया (पीजीपीआर), बैटरी स्प्रेयर पंप और 1 एचपी मोनो ब्लॉक वाटर पंप आदि वितरित किए गए। मध्य प्रदेश के सीहोर, खरगोन, उज्जैन, देवास और शाजापुर जिलों के कुल 2375 किसान इस योजना से लाभान्वित हुये | (तालिका 4.5)। इसी तरह, किसानों के लिए प्रशिक्षण भी आयोजित किए गए और उन्हें कृषि उत्पादकता में सुधार के लिए नई प्रौद्योगिकियों, विविध फसलों और मूल्य संवर्धन का उपयोग करने के लिए प्रशिक्षित किया गया। जलवायु स्मार्ट प्रौद्योगिकियों के उपयोग पर भी जोर दिया गया। एससीएसपी योजना के तहत कुल 14 प्रशिक्षण आयोजित किए गए और प्रशिक्षण कार्यक्रमों से कुल 1197 किसानों को लाभ हआ।

तालिका 4.5: वर्ष 2023-24 में अनुसूचित जाति उप योजना के तहत लाँभार्थियों की कुल संख्या

क्र. सं.	जिले का नाम	वितरित इनपुट का नाम	एससीएसपी के अंतर्गत लाभार्थियों की संख्या
1.	सीहोर और उज्जैन जिला	सोयाबीन बीज	100
2.	सीहोर, उज्जैन और खरगोन जिला	फर्टिलाइजर (एनपीके)	450
3.	सीहोर, उज्जैन और खारगोन जिला	बैटरी ऑपरेटेड पावर स्प्रेयर	425
4.	सीहोर, खरगोन और उज्जैन जिला	गेहूं का बीज	200
5.	सीहोर, खरगोन और उज्जैन जिला	वनस्पति किट	343
6.	सीहोर, खरगोन और उज्जैन जिला	रईनोबैक्टीरिया पौधे के विकास को बढ़ावा देने वाला	200
7.	सीहोर और खरगोन जिला	1 एचपी मोनो ब्लॉक पंप	90%
7.	खंडवा, सीहोर और खारगोन जिला	मूंग बीज	185
8.	खंडवा, सीहोर और खरगोन जिला	हैंड हो	145
9.	सीहोर, खंडवा, खरगोन, देवास, शाजापुर और उज्जैन जिला	सिलाई मशीन	162
10.	सीहोर, खरगोन और देवास जिला	ब्रश कटर	60
11.	सीहोर, खरगोन और देवास जिला	चेन साव	35.
	कुल लाभार्थी		2375

जनजाति उप-योजना के तहत इनपुट वितरण और प्रशिक्षण

मध्य प्रदेश के धार, खंडवा, बरवानी और झाबुआ जिले के अनुसूचित जनजाति (एसटी) समुदाय से संबंधित गरीबी रेखा (बीपीएल) किसानों को सामग्री वितरित किए गए थे। एसटी समुदाय के 125 बीपीएल किसानों को कुल 125 बेहतर बैटरी संचालित स्प्रे पंप वितरित किए गए। इसके अलावा, 9.8 किटल मूंग बीज, 100 सब्जी बीज किट और 100 बैग एन.पी.के. (12:32:16) सरदार पुर ब्लॉक, जिला धार के एसटी समुदाय के 100 बीपीएल किसानों को उर्वरक वितरित किया गया। किसानों को सोयाबीन, ग्रीष्मकालीन मूंग और ग्रीष्मकालीन सब्जियों के विभिन्न उत्पादन और सुरक्षा प्रौद्योगिकियों, स्प्रे पंप के उपयोग और अन्य प्रौद्योगिकियों के बारे में भी एक साथ प्रशिक्षित किया गया।

सोयाबीन किसानों के लिए साप्ताहिक परामर्श

संस्थान ने विभिन्न मीडिया प्लेटफार्मी और ईमेल के माध्यम से सोयाबीन किसानों के लिए साप्ताहिक परामर्श भी प्रसारित किया। सोयाबीन किसानों के लिए साप्ताहिक परामर्श की सूची नीचे दी गई है:

आईसीएआर-आईआईएसआर, इंदौर में प्रशिक्षण और इनपुट वितरण कार्यक्रम की झलक

- 1. साप्ताहिक सलाह (मई 202 3 / May 2023)
- 2. साप्ताहिक सलाह (5-11 जून 202 3 / 5-11 June 2023)
- 3. साप्ताहिक सलाह (12-18 जून 202 3 / 12-18 June 2023)
- 4. साप्ताहिक सलाह (19-25 जून 202 3 / 19-25 June 2023)
- 5. साप्ताहिक सलाह (26 जून -2 जुलाई 202 3 / 26th June-2nd July 2023)
- 6. साप्ताहिक सलाह (3 9 जुलाई 202 3 / 3rd -9th July 2023)
- 7. साप्ताहिक सलाह (10 16 जुलाई 202 3 / 10th -16th July 2023)
- 8. साप्ताहिक सलाह (17 23 जुलाई 202 3 / 17th -23rd July 2023)
- 9. साप्ताहिक सलाह (24-30 जुलाई 202 3 / 24-30th July 2023)
- 10. साप्ताहिक सलाह (31 जुलाई -6 अगस्त 202 3 / 31st July-6th August 2023)
 - 11. साप्ताहिक सलाह (7-13 अगस्त 2023 / 7 th -13th August 2023)
 - 12. साप्ताहिक सलाह (14-20 अगस्त 2022 / 14 th -20th August 2023)
 - 13. साप्ताहिक सलाह (21-27 अगस्त 2022 / 21st-27th August 2023)
 - 14. साप्ताहिक सलाह (28 अगस्त-3 सितंबर 2023/28 अगस्त-3 सितंबर
 - 15. साप्ताहिक सलाह सितंबर 2023 / 4-10 सितंबर 2023)
 - 16. साप्ताहिक सलाह (11-17 सितंबर 2023 / 11-17 सितंबर 2023)
 - 17. साप्ताहिक सलाह (18-24 सितंबर 2023 / 18-24 सितंबर 2023)
 - 18. साप्ताहिक सलाह (25 सितम्बर-1 अक्टूबर 2023/25 सितम्बर-1 अक्टूबर 2023)
 - 19. साप्ताहिक सलाह (2-8 अक्टूबर 2023 / 2nd to 8th October 2023)
 - 20. साप्ताहिक सलाह (9-15 अक्टूबर 2023 / 9th to 15th October 2023)

5 सोयाबीन पर एआईसीआरपी की वार्षिक समूह बैठक

सोयाबीन पर एआईसीआरपी की 53वीं वार्षिक समूह बैठक 16 और 17 मई 2023 को राजमाता विजयराजे सिंधिया कृषि विश्व विद्यालय (आरवीएसकेवीवी), ग्वालियर में आयोजित की गई थी। उदघाटन सत्र डॉ. टी.आर. शर्मा के नेतृत्व में शुरू किया गया था शर्मा, डीडीजी (क्राप साइंस), आईसीएआर, नई दिल्ली। इस सत्र में ग्वालियर के आरवीएसकेवीवी के कुलपति डॉ. अरविंद कुमार शुक्ला मुख्य अतिथि के रूप में उपस्थित थे । अन्य उल्लेखनीय प्रतिभागियों में डॉ. संजीव गृप्ता, एडीजी (तिलहन और दलहन), डॉ. कुंवर हरेन्द्र सिंह, आईसीएआर-आईआईएसआर इंदौर के निदेशक, डॉ. संजय शर्मा, आरवीएसकेवीवी, ग्वालियर में सचिव और अनुसंधान निदेशक डॉ. संजय गुप्ता और सोयाबीन पर एआईसीआरपी के प्रभारी डॉ. संजय गुप्ता शामिल थे। डॉ. संजीव गृप्ता ने अपनी टिप्पणी में एक औद्योगिक और औषधीय फसल के रूप में सोयाबीन के महत्व और कम उत्पादकता की चुनौती से निपटने के लिए अनुसंधान और विकास की आवश्यकता पर जोर दिया। डॉ। केएच सिंह ने पिछली सिफारिशों के आधार पर की गई कार्रवाइयों पर अपडेट प्रदान करते हुए निदेशक की रिपोर्ट प्रस्तुत की। इसके अतिरिक्त, सत्र के दौरान सोयाबीन के विभिन्न

पहलुओं पर तीन प्रकाशन जारी किए गए। डॉ। एके कुलपति शुक्ला ने भारत में सोयाबीन फसलों को बढाने के लिए आईसीएआर-आईआईएसआर, इंदौर में किए गए अनुसंधान प्रयासों पर प्रकाश डाला और जलवाय् परिवर्तन के कारण उत्पादकता में गिरावट पर चिंता व्यक्त की। उन्होंने तनाव-प्रतिरोधी और यांत्रिक कटाई-संगत किस्मों के प्रजनन के महत्व के साथ-साथ प्रति फली बीज वजन और बीज संख्या बढ़ाने पर जोर दिया। सत्र के अध्यक्ष, डॉ. टी.आर. शर्मा डीडीजी (क्रॉप साइंस) ने भारत में कृपोषण को संबोधित करने में सोयाबीन की महत्वपूर्ण भूमिका और प्रजनन पूर्व प्रयासों के माध्यम से सोयाबीन फसलों के आनुवंशिक आधार को व्यापक बनाने की आवश्यकता पर जोर दिया। उन्होंने नई सोयाबीन किस्मों के विकास में वैज्ञानिकों की उपलब्धियों की प्रशंसा की और सोयाबीन की खेती को बढाने के लिए उन्नत प्रजनन तकनीकों के उपयोग का आग्रह किया। उद्घाटन सत्र के समापन पर, एआईसीआरपी सोयाबीन के प्रभारी डॉ. संजय गुप्ता ने वार्षिक समूह बैठक के उद्घाटन सत्र को सफल बनाने में उनकी भूमिका को स्वीकार करते हुए सभी प्रतिभागियों और योगदानकर्ताओं का आभार व्यक्त किया।

तकनीकी सत्र

पादप प्रजनन और आनुवंशिक संसाधन सत्र की अध्यक्षता आईसीएआर, नई दिल्ली में एडीजी (ओ एंड पी) डॉ. संजीव गुप्ता ने की, जबिक डॉ. के.एच. इंदौर के आईसीएआर-आईआईएसआर के निदेशक सिंह ने सह-अध्यक्ष के रूप में कार्य किया। डॉ। संजय गुप्ता, पीआई

संयंत्र प्रजनन ने 2022 में खरीफ मौसम के दौरान आयोजित प्रजनन परीक्षणों के परिणाम प्रस्तत किए. जिसमें समन्वित परीक्षण और जर्मप्लाज्म और संकरण कार्यक्रमों का मुल्यांकन शामिल है। चर्चा के कारण कई सिफारिशें हुईं, जिनमें समन्वित प्रजनन परीक्षणों में मुल्यांकन के अगले दौर के लिए प्रविष्टियों की पहचान, हॉट स्पॉट पर रोग प्रतिक्रियाओं के लिए संगरोध जी. सोजा जर्मप्लास्म का परीक्षण, विशिष्ट लक्षणों के लिए नई जर्मप्लास्म की जांच, आगे प्रजनन कार्यक्रमों के लिए शीर्ष रैंकिंग जीनोटाइप की पहचान करना और 2023 में राष्ट्रीय संकरण कार्यक्रम के लिए क्रॉस को अंतिम रूप देना शामिल है। चर्चा किए गए अन्य विषयों में विभिन्न परिपक्तता समूहों और खाद्य ग्रेड श्रेणियों के लिए परीक्षण अस्वीकृति मानदंड और पदोन्नति मानदंड शामिल थे। एनटोमोलॉजी और पैथोलॉजी के तकनीकी सत्रों की अध्यक्षता और सह-अध्यक्षता डॉ. आरके पंड्या, पादप रोग के प्रोफेसर और डॉ. एमएल शर्मा दोनों ही आरवीएसकेवीवी के प्रोफेसर है। डॉ. अश्विनी बसंद्राई, सीएसकेएचपीकेवीवी, पालमपुर के पूर्व डीन दोनों सत्रों में विषय वस्तु विशेषज्ञ थे। डॉ लोकेश कुमार मीणा, पीआई एंटोमोलॉजी ने देश के 11 समन्वित केंद्रों में किए गए एंटोमोलॉजिकल प्रयोगों पर वार्षिक प्रगति रिपोर्ट प्रस्तुत की। डॉ. मीणा ने सोयाबीन में कीट कीटों की मौसमी घटनाओं, कीट आबादी को दबाने में प्राकृतिक जैव-नियंत्रण एजेंटों की प्रभावशीलता, क्षेत्र और प्रयोगशाला स्क्रीनिंग के माध्यम से कीट-प्रतिरोधक/सहिष्ण जीनोटाइप की पहचान, और कीट प्रतिरोध/सहिष्णुता के लिए आशाजनक जीनोटाइप प्रस्तुत किए, कीट कीटों के प्रबंधन के लिए माइक्रोबियल कंसोर्टिया का मूल्यांकन और सोयाबीन में डिफोलिएटरों को नियंत्रित करने की रणनीति के रूप में सुवा (एनेथम कब्रिस्तान) के साथ इंटरक्रॉपिंग की। डॉ। केपी जीबी से सिंह पंत कृषि एवं प्रौद्योगिकी विश्वविद्यालय, पंतनगर ने पौधों की पैथोलॉजी अनुशासन की वार्षिक रिपोर्ट प्रस्तुत की। डॉ. सिंह ने सोयाबीन रोगों पर ध्यान केंद्रित करते हुए 14 केंद्रों पर आयोजित नौ समन्वित पादप विकृति प्रयोगों के परिणामों को साझा किया। एंथ्रेक्नोज/पोड ब्लाइट, येलो मोज़ेक वायरस (वाईएमवी), और रस्ट की पहचान सबसे प्रचलित और विनाशकारी बीमारियों के रूप में की गई थी। डॉ. सिंह ने रोग प्रबंधन के लिए माइक्रोबियल कीटनाशकों के उपयोग पर चर्चा की और बेसिलस एसपी के साथ बीज उपचार और फोलियो स्प्रे की प्रभावशीलता पर प्रकाश

डाला। EF 53 और Trichoderma Viriided। चर्चा सत्र के दौरान, जीपीएस प्रौद्योगिकी का उपयोग करके बीमारियों का सर्वेक्षण और पता लगाने, वायरस निदान सुविधाएं स्थापित करने, बीज उपलब्धता के मुद्दों को संबोधित करने और विभिन्न परिस्थितियों में प्रतिरोधी लाइनों का मुल्यांकन करने के लिए सुझाव दिए गए।

कृषि विज्ञान सत्र की अध्यक्षता कोटा के कृषि विश्वविद्यालय में अनुसंधान निदेशक डॉ. प्रताप सिंह ने की। आईसीएआर-आईएआरआई, नई दिल्ली में प्रधान वैज्ञानिक डॉ. यशवीर सिंह शिवे ने विशेषज्ञ के रूप में कार्य किया। डॉ. आर.के. वर्मा, पीआई, कृषि विज्ञान, ने 2022 में खरीफ सत्र के दौरान आयोजित पांच कृषि संबंधी परीक्षणों के परिणाम प्रस्तृत किए। माइक्रोबायोलॉजी सत्र की अध्यक्षता डॉ. ए.के. आईसीएआर-एनबीएआईएम के पर्व निदेशक सक्सेना ने आईएआरआई. नई दिल्ली में माइक्रोबायोलॉजी में प्रधान वैज्ञानिक डॉ. स्वर्ण लक्ष्मी के साथ विशेषज्ञ के रूप में कार्य किया। डॉ। एमपी शर्मा. पीआई माइक्रोबायोलॉजी ने इस अनुशासन की वार्षिक रिपोर्ट प्रस्तुत की। यह सुझाव दिया गया था कि माइक्रोबियल कंसोर्टिया आईआईएसआर (ब्रैडिराइजोबियम डेकिंगेंस + बी. आर्यभट्टाई) पर एक प्रदर्शन आयोजित किया जाना चाहिए जिसमें प्रदर्शन के लिए आवश्यक संस्कृतियों की आपूर्ति आईआईएसआर, इंदौर द्वारा की जाएगी। समापन भाषण के दौरान डॉ. ए.के. सक्सेना ने अधिक सोयाबीन राइजोबियल उपभेदों को विकसित करने और मध्य प्रदेश की मिट्टी में सोयाबीन राइजोबियल आबादी की स्थिति का पुनर्मूल्यांकन करने के महत्व पर जोर दिया।

डॉ. संजीव गुप्ता, एडीजी (ओ एंड पी) और डॉ. आर के माथुर प्रौद्योगिकी हस्तांतरण सत्र के अध्यक्ष और सह-अध्यक्ष थे। डॉ. एस.के. झा, प्रधान वैज्ञानिक (ओ एंड पी), आईसीएआर, नई दिल्ली, सत्र के विशेषज्ञ थे। प्रधान अन्वेषक डॉ. राघवेंद्र नारगुंड ने एफएलडी प्रगति प्रस्तुत की और वर्ष 2023 के लिए नए एफएलडी के आवंटन पर चर्चा की। डॉ. संजय गुप्ता ने टीएसपी और एनईएच गतिविधियों पर अपडेट प्रदान किए। यह सुझाव दिया गया था कि क्षेत्र के दिनों के दौरान राज्य विभागों और कृषि विज्ञान केंद्रों (केवीके) के कर्मचारियों को शामिल किया जाए और एफएलडी भूखंडों का दौरा किया जाए। एफएलडी में भाग लेने के लिए उद्योग पेशेवरों को आमंत्रित करने की सिफारिश की गई थी जिसमें खाद्य-ग्रेड प्रौद्योगिकियां शामिल हैं, विशेष रूप से मध्य क्षेत्र में।

एफएलडी आवंटन के संदर्भ में, केवल पांच साल से कम उम्र की किस्मों पर विचार किया जाना चाहिए। पहले से प्रदर्शित साइटों की समीक्षा करके एफएलडी के प्रभाव विश्लेषण का संचालन करने का भी सुझाव दिया गया था। इसके अतिरिक्त, यह एक अनिवार्य आवश्यकता के रूप में सभी एफएलडी को जियोटैग करने का प्रस्ताव था। डॉ. संजीव गुप्ता, एडीजी (ओ एंड पी) ने खाद्य प्रौद्योगिकी सत्र की अध्यक्षता की और डॉ. ज्ञानेश सतपूते ने रैपपोर्टर के रूप में कार्य किया। प्रधान अन्वेषक डॉ. एल. सोफिया देवी ने वार्षिक प्रगति रिपोर्ट प्रस्तुत की। आगे के मुल्यांकन के लिए केवल एवीटी ॥ प्रविष्टियों का मुल्यांकन करने का निर्णय लिया गया था और तेल, सोया दुध और टोफू के लिए खाद्य ग्रेड मापदंडों को स्पष्ट रूप से निर्दिष्ट किया जाना चाहिए, और इन विनिर्देशों को व्यापक परामर्श के माध्यम से निर्धारित किया जाएगा। जारी की गई सभी किस्मों को Kunitz Trypsin Inhibitor (KTI) और Lipoxygenase 2 (Lox 2) स्तरों के लिए प्रोफाइल किया जाएगा। टोफू उत्पादन की रिपोर्ट सोयाबीन अनाज, स्टार्च और प्रोटीन सामग्री के टोफ़ उत्पादन/केजी में भी खाद्य ग्रेड मापदंडों के हिस्से के रूप में की जाएगी। उपरोक्त सभी सत्रों के लिए, वर्ष 2023 के लिए तकनीकी कार्यक्रम तैयार किया गया था।

सिफारिशों

सोयाबीन पर एआईसीआरपी की 53वीं वार्षिक समूह बैठक से निम्नलिखित सिफारिशें सामने आईं:

- रिलीज़ के लिए सात किस्मों अर्थात पीएस 1670 (एनपीजेड के लिए), आरएससी 2011-35 9 ईजेड के लिए), और जेएस 22-12, जेएस 22-16, एनआरसी 165, एनआरसी 181 और एनआरसी 188 (सीजेड के लिए) की सिफारिश की गई थी।
- सभी क्षेत्रों में बुवाई के बाद 20-25 और 50-55 दिनों पर 750 पीपीएम/हेक्टेयर की दर से फोलियर स्प्रे के रूप में थियोरिया के आवेदन की सिफारिश की जाती है।
- लगातार सोयाबीन मोनो-क्रॉपिंग पर फायदेमंद पाए जाने वाले फसल रोटेशन में मक्का का समावेश।
- चूंकि न्यूनतम और पारंपिरक जुताई के बीच का अंतर गैर-महत्वपूर्ण पाया गया था, इसलिए उच्च बी: सी अनुपात के कारण न्यूनतम जुताई की सिफारिश की जाती है।
- नोमुरिया रिलेई @ 2 किग्रा/हेक्टेयर और बैसिलस थुरिएंसिस @ 1 किग्रा/हेक्टेयर के संयोजन को डिफोलिएटर कीट-पीड़कों के प्रबंधन में सबसे प्रभावी उपचार पाया गया, जैसे बिहार बालों वाली कैटरिपलर, तंबाकू कैटरिपलर, सेमीलूपर्स और पत्ती वेबर।

6. आयोजन एवं बैठक

आयोजन

आईसीएआर सेंट्रल जोन स्पोर्ट्स टूर्नामेंट

पहली बार, इंदौर में संस्थान द्वारा भारतीय कृषि अनुसंधान परिषद (आईसीएआर) के "सेंटल जोन स्पोर्ट्स टूरनेमेंट" का आयोजन किया गया था। टूर्नामेंट का आयोजन 3 जनवरी 2023 से 6 जनवरी 2023 के दौरान देवी अहिल्या विश्वविद्यालय इंदौर के शारीरिक शिक्षा स्कूल में किया गया था। देवी अहिल्या विश्वविद्यालय के कुलपति डॉ. रेणु जैन मुख्य अतिथि थे जबकि डॉ. सी. आरं. इस अवसर परं भाकृअनुप केंद्रीय कृषि अभियांत्रिकी संस्थान, भोपाल के निदेशक मेहता सम्मानित अतिथि थे। विश्वविद्यालय और आईसीएआर के निदेशकों ने इस कार्यक्रम में गरिमा बढाई, जिसमें डॉ. सुधीरा चंदेल, निदेशक, शारीरिक शिक्षा, डीएवीवी, इंदौर; डॉ. अनिकेत सान्याल, निदेशक, निषाद, भोपाल; डॉ. ए.बी. सिंह, निदेशक, भारतीय मृदा विज्ञान संस्थान, भोपाल; डॉ. जे.एस. मिश्रा, निदेशक, खरपतवार अनुसंधान निदेशालय, जबलपुर; डॉ. बीपी भास्कर, निदेशक, एनबीएसएस एंड एलयूपी, नागपुर; डॉ. शरद चौधरी, डीन, कृषि महाविद्यालय, इंदौर; डॉ. दीपक मेहता, प्रमुख, भौतिक शिक्षा, डीएवी : डॉ। केसी इंदौर के क्षेत्रीय केंद्र आईएआरआई के प्रमुख शर्मा भी इस अवसर उपस्थित थे। शुरुआत में, डॉ। केएच आईआईएसआर, इंदौर के निदेशक श्री सिंह ने राष्ट्रीय कृषि अनुसंधान संस्थानों के खिलाडियों को खेल अवसंरचना और सुविधाएं प्रदान करने के कार्यक्रम के मुख्य अतिथि डॉ. रेण जैन का आभार व्यक्त किया। अपनी टिप्पणी में, डॉ. रेणु जैन ने कहा कि ये जीवन के कुछ महत्वपूर्ण क्षण हैं जिन्हें खेलते समय बिताना चाहिए, लेकिन खेल भावना के साथ जीत और हार को अपनाया जाना चाहिए। उन्होंने कहा कि परिणाम को भावना के साथ अपनाएं, सर्वश्रेष्ठ योगदान दें और हर बार सुधार करने का प्रयास करें। टूर्नामेंट के उद्घाटन की घोषणा करते हुए, उन्होंने एक प्रेरणादायक उद्धरण का उल्लेख किया सबसे संतोषजनक जीवन वह है जो खुद का सबसे अच्छा संस्करण बनने की खोज में खर्च किया जाता है। डॉ. के. एच. सिंह ने अतिथियों और सभी प्रतिभागियों का स्वागत किया और आईसीएआर जोनल टूर्नामेंट का अवलोकन किया। उन्होंने सभी प्रतिभागियों को अपना सर्वश्रेष्ठ देने और हर खेल को अच्छी आत्माओं में खेलने के लिए प्रोत्साहित किया। इस लौ को आईसीएआर आईआईएसआर के एक वरिष्ठ एथलीट डॉ. राजेश वंगला द्वारा लाया गया था और टूर्नामेंट की मशाल को मुख्य अतिथि और समारोह के सम्मानित अतिथि द्वारा रोशन किया गया था। शपथ समारोह आयोजित किया गया और संस्थानों के सभी प्रमुख-डी-मिशन ने पूरी टुकडी की ओर

से शपथ ली। शपथ को वरिष्ठ वैज्ञानिक डॉ. गिरिराज कुमावत ने पढा, जबिक आईसीएआर-आईआईएसआर, इंदौर के प्रधान वैज्ञानिक डॉ. ज्ञानेश सैटपुटे ने औपचारिक धन्यवाद प्रस्ताव दिया। 15 संस्थानों की सभी टीमों. जिनमें उनके चीफ-डी-मिशन, प्रबंधक और लगभग 550 खिलाडी शामिल हैं, ने टूर्नामेंट के विभिन्न कार्यक्रमों में भाग लिया। टूर्नामेंट में पुरुषों के लिए 13 कार्यक्रम और महिलाओं के लिए 06 कार्यक्रम थे। आईसीएआर-आईएआरआई ने 19 स्वर्ण पदक, 8 रजत पदक और ८ कांस्य पदक जीते। आईसीएआर-सीआईएई ने 3 स्वर्ण पदक. 8 रजत पदक और 1 कांस्य पदक जबकि आईसीएआर-आईआईएसआर ने 2 स्वर्ण पदक, ३ रजत पदक और एक कांस्य पदक जीता। चैंपियनशिप टॉफी ओवरऑल आईसीएआर-आईएआरआई, नई दिल्ली टीम को प्रदान की गई।

वनस्पति तेल पर अंतर्राष्ट्रीय सम्मेलन 2023 (आईसीवीओ 2023)

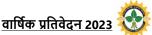
आईसीएआर-आईआईएसआर ने 17-21 जनवरी 2023 के दौरान वनस्पति तेल 2023 (आईसीवीओ 2023) पर अंतर्राष्ट्रीय सम्मेलन के आयोजन में आईसीएआर-आईआईओआर. हैदराबाद के साथ साझेदारी की। इस सम्मेलन को प्राथमिकता अनुनय के लिए एक अभिसरण बिंदु के रूप में परिकल्पित किया गया था और वैश्विक और साथ ही राष्ट्रीय स्तरों पर लघ्, मध्यम और दीर्घकालिक आधार पर सब्जियों के तेल के उत्पादन में वृद्धि को बढावा देने के लिए अनुसंधान रणनीतियों, बुनियादी ढांचे की विकास आवश्यकताओं, व्यापार और मूल्य श्रंखला पारिस्थितिकी तंत्र और नीति परिप्रेक्ष्य पर विचार-विमर्श करने के लिए एक मंच प्रदान किया गया था। सम्मेलन के दौरान कई आमंत्रित वार्ताओं, पूर्ण वार्ताओं, अंशदायी मौखिक के साथ-साथ पोस्टर प्रस्तृतियों और प्रौद्योगिकी प्रदर्शनियों का प्रदर्शन किया गया। इसके अलावा, सम्मेलन के दौरान प्रमुख सब्जी तेल फसलों के विशिष्ट मुद्दों के लिए समर्पित पांच उपग्रह संगोष्ठियों को भी निष्पादित किया गया। सोयाबीन पर उपग्रह संगोष्ठी 20 जनवरी 2023 को आयोजित की गई

थी। सत्र की शुरुआत डॉ. के.एच. की स्वागत टिप्पणियों से हुई। सिंह, निदेशक, आईसीएआर-भारतीय सोयाबीन अनुसंधान संस्थान, (आईआईएसआर), इंदौर। डॉ। केएच सिंह ने सोयाबीन उत्पादन में अवलोकन और चुनौतियों पर अपनी बात रखी। उन्होंने सोयाबीन उत्पादन में प्रमुख चुनौतियों पर प्रकाश डाला और इन चुनौतियों के साथ-साथ सोयाबीन क्षेत्र के विस्तार को पूरा करने के लिए विभिन्न रणनीतियों पर चर्चा की। उन्होंने इस अंतर को पाटने के लिए आवश्यक सोयाबीन उत्पादकता और नीतिगत हस्तक्षेपों में उत्पादन के अंतर पर भी प्रकाश डाला।

Dr. Babu Valliyodan, Ass. जेनेटिक्स के प्रोफेसर और जेनोमिक्स प्रोग्राम, लिंकन, विश्वविद्यालय, मिसौरी, युएसए के निदेशक ने सोयाबीन में जेनोम-वाइड एसोसिएशन अध्ययन पर बात की। उन्होंने अपनी टीम द्वारा विभिन्न जीनोमिक संसाधनों के विकास और उपयोग पर प्रकाश डाला। उन्होंने पोषण से बढी हुई सोयाबीन किस्मों, आनुवंशिक विविधता अध्ययन और जीन खोज के विकास के लिए इन संसाधनों के उपयोग पर भी जोर दिया। एग्रील के लिए जापान इंटरनेशनल रिसर्च सेंटर से वरिष्ठ रिसर्चर डॉ. नाओकी यामानाका। विज्ञान (जिरकास), जापान, ने एशियाई सोयाबीन रस्ट प्रतिरोध के लिए ब्रीडिंग पर बात की, उन्होंने निष्कर्ष निकाला कि रस्ट प्रतिरोधी जीन की जीन पिरामिडिंग रोगज़नक़ के खिलाफ मजबूत प्रतिरोध की ओर ले जाती है। मिसौरी, कोलंबिया, यूएसए विश्वविद्यालय में सहायक प्रोफेसर और नेक्स्टजेन ट्रांसलेशनल बायोइंफॉर्मेटिक्स लीड डॉ. ट्रप्ति जोशी ने सोयाबीन इम्प्रोवमेंट के लिए ट्रांसलेशनल जेनोमिक्स टूल्स पर एक रिकॉर्ड वार्ता की। उन्होंने सोयाबीन में अनुवाद संबंधी अनुसंधान के लिए जैव सूचना विज्ञान और वेब आधारित उपकरणों के हाल के विकास और उपयोग पर चर्चा की। डॉ. मदन भट्टाचार्य, प्रोफेसर, कृषि विज्ञान विभाग, आयोवा स्टेट यूनिवर्सिटी, आईए, यूएसए, ने सोयाबीन प्रोटीन जीएमडीआर1 द्वारा एन्कोड किए गए व्यापक-स्पेक्ट्म रोगज़नक़ और कीट प्रतिरोध के आणविक आधार को समझने के लिए एक बातचीत की। इसके बाद डॉ। एमपी द्वारा मौखिक प्रस्तुतियां दी गईं। शर्मा, डॉ. संजय गृप्ता, डॉ. जे.जी.मंजया, डॉ. विनीत कुमार, डॉ. मिलिंद रत्नापरखे और डॉ. मृणाल कुचलान वक्ताओं ने सोयाबीन के उत्पादन और उत्पादकता को बढाने के लिए विभिन्न तकनीकों पर प्रकाश डाला और उच्च गुणवत्ता वाले सोयाबीन बीज उत्पादन के लिए रणनीतियों पर भी चर्चा की। इसके अलावा 16 वक्ताओं द्वारा संक्षिप्त मौखिक प्रस्तुतियां दी गईं।

सोयाबीन उत्पादन प्रणाली में सुधार पर एक पैनल चर्चा का संचालन डॉ. मदन भट्टाचार्य ने किया। पैनलिस्ट में डॉ. नीता खांडेकर, डॉ. अनीता रानी और सोयाबीन कार्यशाला के सभी आमंत्रित वक्ता शामिल थे। विचार-विमर्श के दौरान, निम्नलिखित सुझाव/सिफारिशें सामने

- 1. उच्च उत्पादन और जलवायु लचीली किस्मों के विकास द्वारा उत्पादकता में वृद्धि के लिए प्रयास किए जाने चाहिए। इस उद्देश्य के लिए, विशेषता विशिष्ट जर्मप्लाज्म पहचान, जीन खोज, मार्कर विकास और उनका अनुप्रयोग, और जीन संपादन महत्वपूर्ण दृष्टिकोण हैं।
- 2. नए लक्ष्य क्षेत्र द्वारा क्षेत्र का विस्तार विशिष्ट कृषि विकास, नए किसानों को विस्तार और शिक्षा और गैर-पारंपरिक क्षेत्र में किसानों को प्रोत्साहन जैसी नीतिगत
- 3. सूखे और जलभराव की स्थितियों को कम करने के लिए वर्षा जल प्रबंधन और बेहतर भूमि विन्यास के बारे में किसानों को शिक्षित करना
- सोयाबीन के खाद्य उपयोग को और बढाने के लिए सोयाबीन खाद्य उत्पादों की विशेषता सोयाबीन का विकास, मूल्य संवर्धन और लोकप्रियकरण।
- 5 Persl. प्रौद्योगिकी हस्तांतरण सहित अनसंधान और क्षमता निर्माण के लिए सार्वजनिक और निजी भागीदारी। सत्र का समापन डॉ. निता खांडेकर के धन्यवाद प्रस्ताव के साथ हुआ। इसके अलावा, आईसीएआर-आईआईएसआर ने सम्मेलन के दौरान दो सर्वश्रेष्ठ मौखिक प्रस्तुति पुरस्कार, एक सर्वश्रेष्ठ पोस्टर पुरस्कार और एक सर्वश्रेष्ठ पेपर पुरस्कार जीता।


विश्व मुदा दिवस

5 दिसंबर 2023 को, संस्थान ने विश्व मृदा दिवस मनाया है। कार्यक्रम के मुख्य अतिथि सामाजिक कार्यकर्ता पद्म श्री प्राप्तकर्ता और जिमी मैकगिलिगन सेंटर फॉर सस्टेनेबल डेवलपमेंट की संस्थापक निदेशक श्रीमती निर्मला सीतारमण थीं। जनक पाल्टा मैकगिलिगन इस अवसर पर श्रीमती मैकगिलिगन ने प्राकृतिक संसाधनों, विशेष रूप से भविष्य की पीढियों के लिए मिट्टी के संरक्षण के महत्व पर बात की है। उन्होंने मानव और मृदा स्वास्थ्य में प्राकृतिक और जैविक खेती की भूमिका पर भी जोर दिया। प्रधान वैज्ञानिक डॉ. अकेती रमेश ने संस्थान के खेतों के मृदा स्वास्थ्य मापदंडों की स्थिति प्रस्तुत की है। आईसीएआर-आईआईएसआर के निदेशक डॉ. के.एच. सिंह ने वैज्ञानिकों से विभिन्न उपायों के माध्यम से अनुसंधान भूखंडों के मृदा स्वास्थ्य को बनाए रखने का आग्रह किया।

आईसीएआर-आईआईएसआर का 37वां स्थापना

संस्थान ने 11 दिसंबर, 2023 को अपना 37वां स्थापना दिवस मनाया। कृषि वैज्ञानिक भर्ती बोर्ड (एएसआरबी) के अध्यक्ष डॉ. संजय कुमार इस अवसर पर मुख्य अतिथि के रूप में उपस्थित थे, जबिक संस्थान के पूर्व निदेशक डॉ. वी.एस. भाटिया इस कार्यक्रम के सम्मानित अतिथि थे। संस्थान के निदेशक डॉ. के. एच. सिंह ने गणमान्य व्यक्तियों का स्वागत किया और संस्थान की एक संक्षिप्त रिपोर्ट प्रस्तुत की। मुख्य अतिथि डॉ. संजय कुमार ने सोयाबीन और किसानों की बेहतरी में योगदान के लिए संस्थान को बधाई दी और सोयाबीन में संभावित अनुसंधान आयाम के बारे में संबोधित किया। संस्थान के पूर्व निदेशक डॉ. वी. एस. भाटिया ने कहा कि पिछले 37 वर्षों में, संस्थान ने उच्च उत्पादन और खाद्य श्रेणी के पात्रों जैसे वांछनीय लक्षणों के साथ कई किस्में विकसित की हैं, जिन्हें औपचारिक विस्तार तंत्र के माध्यम से बढावा देने की आवश्यकता है। इस

अवसर पर संस्थान की शुरुआत से लेकर वर्तमान समय तक की यात्रा की एक फिल्म का उद्घाटन किया गया। कार्यक्रम के दौरान संस्थान के कई प्रकाशन जारी किए गए। संस्थान के कर्मचारियों के अथक प्रयासों को स्वीकार करते हुए, सर्वश्रेष्ठ श्रमिकों को सम्मानित किया गया। वैज्ञानिक श्रेणी में डॉ. शिवकुमार एम., डॉ. निखिलेश पांड्या और श्रीमती को पुरस्कार प्रदान किया गया। सागर बाई को क्रमशः तकनीकी और सहायक स्टाफ श्रेणी में सम्मानित किया गया। संस्थान में उनके उत्कृष्ट योगदान के लिए प्रशासन और वित्त अनुभाग और कृषि अनुभाग को बेस्ट टीम पुरस्कार भी दिए गए।

स्वच्छता पखवाडा २०२३

स्वच्छता पखवाडा 2023 16-31 दिसंबर, 2023 से मनाया गया और कार्यक्रम के दौरान विभिन्न गतिविधियां आयोजित की गईं। स्वच्छता पखवाडा के उद्घाटन कार्यक्रम के दौरान, संस्थान के निदेशक डॉ. के.एच. के नेतृत्व में सभी वैज्ञानिक, प्रशासनिक और तकनीकी कर्मचारी। सिंह ने स्वच्छ और हरित भारत की शपथ ली। संस्थान के सभी कर्मचारियों द्वारा संस्थान के भीतर क्लीनिंग कार्यक्रम किया गया है। समापन कार्यक्रम के दौरान विजेताओं को पुरस्कार और प्रमाण पत्र वितरण के साथ कार्यक्रम का समापन किया गया। स्वच्छ भारत अभियान के सदस्य सचिव श्री श्याम किशोर वर्मा ने विभिन्न गतिविधियों का सावधानीपूर्वक आयोजन किया।

राष्ट्रीय किसान दिवस के अवसर पर सोयाबीन बीज दिवस

पूर्व प्रधान मंत्री श्री चौधरी चरण सिंह के जन्म दिवस के उपलक्ष्य में 23 दिसंबर 2023 को आईसीएआर-आईआईएसआर, इंदौर के परिसर में राष्ट्रीय किसान दिवस के अवसर पर सोयाबीन बीज दिवस का आयोजन किया गया था। इस कार्यक्रम में आईसीएआर-आईआईएसआर के निदेशक डॉ. कुंवर हरेन्द्र सिंह ने भाग लिया। इस कार्यक्रम में मध्य प्रदेश, राजस्थान और महाराष्ट्र के 1200 से अधिक किसानों ने भाग लिया। इस कार्यक्रम के दौरान किसानों को नई किस्मों के बीजों के लिए आत्मनिर्भर बनाने के लिए एनआरसी 150, एनआरसी 165 और एनआरसी 181 के कुल 1300 बीज पैकेट बेचे गए।

राष्ट्रीय अभियान गणतंत्र दिवस

जिस दिन भारत का संविधान लागू हुआ, उस दिन की स्मृति में, संस्थान ने 26 जनवरी 2023 को देश का 74वां गणतंत्र दिवस मनाया है। इस अवसर पर, डॉ. के.एच. सिंह, निदेशक, आईसीएआर-आईआईएसआर ने भारत के संविधान के महत्व के बारे में संबोधित किया और बताया कि कैसे भारतीय एक डोमिनियन देश से एक गणतंत्र देश में बदल गया।

अंतर्राष्ट्रीय योग दिवस अंतर्राष्ट्रीय योग दिवस 2023 की थीम वसुधैव कुटुम्बकम के लिए योग थी। संस्थान ने 21 जून, 2023 को अंतर्राष्ट्रीय योग दिवस मनाया। इस दिन का उद्देश्य योग के अभ्यास के कई लाभों के बारे में दुनिया भर में जागरूकता बढ़ाना है। माधवबाग क्लिनिक के प्रमुख और योग विशेषज्ञ डॉ. मोनिका परमार के मार्गदर्शन में एक योग सत्र का आयोजन किया गया, जिन्होंने कर्मचारियों को योग का अभ्यास करने के लिए प्रोत्साहित किया। इस अवसर पर, आईसीएआर-आईआईएसआर के निदेशक डॉ. के.एच. सिंह ने कर्मचारियों से योग आसन का अभ्यास करके शारीरिक स्वास्थ्य बनाए रखने का आग्रह किया। सहायक श्री रविशंकर ने कार्यक्रम का समन्वय किया।

स्वतंत्रता दिवस

संस्थान ने 15 अगस्त 2023 को देश का 77वां स्वतंत्रता दिवस मनाया है। इस अवसर पर आईसीएआर आईआईएसआर के निदेशक डॉ. के.एच. सिंह ने राष्ट्र को दिन के महत्व के बारे में संबोधित किया और भारत को उपनिवेशीकरण से मुक्त कराने में स्वतंत्रता सेनानियों के बलिदान को याद किया। उन्होंने संस्थान के कर्मचारियों से सोयाबीन उत्पादन बढ़ाने और भारत को खाद्य तेल में आत्मनिर्भर बनाने के माध्यम से राष्ट्र की सेवा करने का भी आग्रह किया।

सतर्कता जागरूकता सप्ताह 18वां पार्थेनियम हिस्टेरोफोरस जागरूकता सप्ताह

पार्थेनियम हिस्टेरोफोरस को देश के विभिन्न भागों में विभिन्न नामों से जाना जाता है। यह सबसे लगातार खरपतवार में से एक है और जिसका दुष्प्रभाव मुख्य रूप से फसल उत्पादन में कमी और एक्जिमा, अस्थमा और एर्लर्जी आदि जैसी बीमारियों के रूप में देखा गया है। मनुष्यों में. इस घास के कारण होने वाली समस्याओं से छुटकारा पाने के लिए, 16-22 अगस्त, 2023 से एक सप्ताह तक चलने वाला जागरूकता कार्यक्रम आयोजित किया गया था। सप्ताह भर चलने वाले कार्यक्रम में संस्थान में एक

3

सत्र का आयोजन किया गया, जिसमें डॉ. राघवेंद्र नारगुंड, वैज्ञानिक (भूविज्ञान) ने पार्थेनियम हेटेरोफोरिया के कारण होने वाली समस्याओं के बारे में कर्मियों का मूल्यांकन किया। खेतों की सफाई, परिसर की सफाई आदि जैसे विभिन्न कार्यक्रम भी आयोजित किए गए। इस कार्यक्रम का नेतृत्व श्री ने किया। एसके वर्मा, एसेटस ऑफिसर

नियमों का पालन करने और संस्थान के लिए पूरी ईमानदारी और ईमानदारी के साथ काम करने का आह्वान किया। 2 नवंबर को, निदेशक के नेतृत्व में सभी स्टाफ सदस्यों ने संस्थान के भीतर वॉकथॉन किया। कार्यक्रम का समापन 6 अक्टूबर को वैलिडिक्टरी-सह-पुरस्कार वितरण के साथ हुआ।

वैज्ञानिक बैठकें

37वीं संस्थान अनुसंधान परिषद

आईसीएआर-आईआईएसआर की संस्थान अनुसंधान परिषद (आईआरसी) की बैठक 24-25 अप्रैल, 2023 को आयोजित की गई थी। आईआरसी के अध्यक्ष और आईसीएआर-आईआईएसआर के निदेशक डॉ. के.एच. सिंह ने सत्र की अध्यक्षता की। सदस्य सचिव डॉ. मनोज श्रीवास्तव ने 36 वीं आईआरसी की कार्रवाई रिपोर्ट प्रस्तुत की। परियोजनाओं के प्रमुख जांचकर्ताओं ने संबंधित परियोजना की गतिविधियों और उपलब्धियों को प्रस्तुत किया। डॉ. के.एच. सिंह ने अनुसंधान गतिविधियों की सराहना की और नई विकसित किस्मों के बीज के त्वरित गुणन और वितरण की योजना बनाने की आवश्यकता पर जोर दिया। उन्होंने कहा कि विभिन्न किस्मों में तनाव

सिहष्णुता और रोग प्रतिरोध को शामिल करने और फोटो-थर्मो-असंवेदनशीलता और लंबी किशोरावस्था जैसे लक्षणों पर जोर दिया जाना चाहिए। इसके अलावा, उन्होंने वैज्ञानिकों से प्रत्येक परियोजना से परिणाम के रूप में कम से कम एक उत्पाद/प्रौद्योगिकी/प्रकाशन और संस्थान स्तर पर प्रति वर्ष कम से कम एक मेगा उत्पाद वितरित करने का आग्रह किया। उन्होंने क्षेत्र और प्रयोगशाला प्रयोगों की सटीकता पर जोर दिया और प्रयोगों की निगरानी के लिए एक आंतरिक निगरानी समिति का प्रस्ताव रखा।

26वीं अनुसंधान सलाहकार समिति की बैठक

26वीं अनुसंधान सलाहकार समिति (आरएसी) की बैठक 30-31 मई 2023 के दौरान संकर मोड में आईसीएआर-आईआईएसआर, इंदौर में आयोजित की गई थी। बैठक डॉ. एस. के. की अध्यक्षता में हुई। पूर्व कुलपति, हिमाचल प्रदेश कृषि विश्वविद्यालय, पालमपुर के सदस्यों के साथ डॉ. संजीव गुप्ता, एडीजी (ओपी), आईसीएआर, नई दिल्ली, डॉ. के.एच. सिंह, निदेशक, आईसीएआर-आईआईएसआर, इंदौर, डॉ. टी.के. उपाध्याय, पूर्व निदेशक, आईसीएआर-एनआरआरआई, कटक, डॉ. ओ.पी. शर्मा, ईx निदेशक, आईसीएआर-एनसीआईपीएम, नई दिल्ली और प्रो. आर.एस. सिंघल, पूर्व डीन, फूड एंगग और टेक, आईसीटी, मुंबई। डॉ. के.एच. सिंह, निदेशक, आईसीएआर-आईआईएसआर द्वारा संस्थान की समग्र अनुसंधान और विकास गतिविधियों के बारे में एक व्यापक रिपोर्ट प्रस्तुत की गई। आरएसी के सचिव डॉ. महावीर प्रसाद शर्मा ने पिछली बैठक की सिफारिशों की कार्रवाई रिपोर्ट पेश की। अध्यक्ष और सदस्यों ने अनुसंधान गतिविधियों में और सुधार और सुव्यवस्थित करने के लिए सिफारिशें कीं। सिमिति के सदस्यों ने संस्थान द्वारा किए गए प्रयासों की सराहना की। समिति ने अनुसंधान फार्म के साथ-साथ आस-पास के गांव का भी दौरा किया और सोयाबीन किसानों के साथ बातचीत की।

27वीं अनुसंधान सलाहकार समिति की बैठक

डॉ. स्वपन दत्ता, पूर्व डीडीजी (सीआरओपी साइंस) आईसीएआर. नई दिल्ली की अध्यक्षता में नई आरएसी समिति का गठन किया गया है। नवगठित आरएसी ने 21-22 सितंबर 2023 के दौरान आईसीएआर-आईआईएसआर, इंदौर का दौरा किया। आईसीएआर आईआईएसआर के निदेशक डॉ. के.एच. सिंह ने समिति के अध्यक्ष और सदस्यों का स्वागत किया। सदस्य सचिव डॉ. एम.बी. रत्नापरखे ने 26वें आरएसी की की-गई-कार्रवाई रिपोर्ट प्रस्तुत की है। डॉ. संजय गुप्ता, प्रधान वैज्ञानिक ने आनुवंशिक संसाधनों, प्रजनक बीज उत्पादन और एआईसीआरपी सोयाबीन के संवर्धन और प्रबंधन की स्थिति के बारे में प्रस्तुत किया। फसल सुधार अनुभाग के प्रधान वैज्ञानिक और प्रभारी डॉ. अनीता रानी ने सोयाबीन प्रजनन, जैव प्रौद्योगिकी. जैव रसायन और बीज प्रौद्योगिकी की अनुसंधान स्थिति प्रस्तुत की। डॉ। बीयू। फसल उत्पादन अनुभाग के प्रधान वैज्ञानिक और प्रभारी दुपारे ने सोयाबीन उत्पादन प्रौद्योगिकियों पर अनुसंधान स्थिति प्रस्तुत की, जबकि डॉ. एम.पी. फसल संरक्षण अनुभाग के प्रधान वैज्ञानिक और प्रभारी शर्मा ने सोयाबीन सुरक्षा प्रौद्योगिकियों पर अनुसंधान प्रस्तुत किया। आरएसी के अध्यक्ष डॉ. स्वपन दत्ता ने संस्थान में चल रहे अनुसंधान कार्य की सराहना की और वैज्ञानिकों से तिलहन में भारत की आत्मनिर्भरता की दिशा में प्रौद्योगिकियों के साथ आने का आग्रह किया। समिति ने संस्थान के अनुसंधान क्षेत्रों का दौरा किया है और वैज्ञानिकों को अनुसंधान प्रयोगों की बेहतरी के तरीकों के बारे में सलाह दी है। इसके अलावा. किसान के क्षेत्र स्तर पर उत्पादन की समस्याओं को जानने के लिए एक किसान का क्षेत्रीय दौरा भी किया गया था।

क्रिकेंनियल रिव्यू टीम (क्यूआरटी)

भारतीय कृषि अनुसंधान परिषद ने 2017 से 2021 की अवधि के लिए आईसीएआर-आईआईएसआर इंदौर के लिए एक पंचवार्षिक समीक्षा टीम (क्यूआरटी) का गठन किया। डॉ. एस राजेंद्र प्रसाद, पूर्व कुलपति, यूएएस, बेंगलुरु अध्यक्ष थे और (1) डॉ. एसआर भट, पूर्व प्रधान वैज्ञानिक और प्रोफेसर, आईसीएआर-आईवीआरआई बरेली आईसीएआर- राष्ट्रीय संयंत्र जैव प्रौद्योगिकी संस्थान, (2) डॉ. प्रभाकर, पूर्व परियोजना समन्वयक. लघु मिलेट एआईसीआरपी, बेंगलुरु (3) डॉ. एमए शंकर, पूर्व अनुसंधान निदेशक, यूएएस, बैंगलोर (4) डॉ. ओपी शर्मा, पूर्व प्रधान वैज्ञानिक (पौधे पैथोलॉजी) और निदेशक (ए) (5) डॉ. संदीप सारण, प्रधान वैज्ञानिक (कृषि अर्थशास्त्र) और प्रमुख टीम के सदस्य थे। आईसीएआर-आईआईएसआर इंदौर के प्रधान वैज्ञानिक डॉ. संजय गृप्ता टीम के सदस्य सचिव थे। क्युआरटी की प्रारंभिक बैठक 21 और 22 फरवरी, 2023 को आईआईएसआर इंदौर की समीक्षा करने और एआईसीआरपी केंद्रों की यात्रा की योजना बनाने के लिए संस्थान में आयोजित की गई थी। क्यूआरटी ने 21 जनवरी को आईसीएआर-आईआईएसआर की समीक्षा की और 22 फरवरी को पास के इंदौर क्षेत्र में सोयाबीन किसानों का दौरा किया। क्यूआरटी ने पूर्वी और उत्तर पूर्वी पहाडी क्षेत्र के लिए दक्षिणी क्षेत्र, पूर्वी और उत्तर पूर्वी पहाड़ी क्षेत्र के लिए मेडज़िफेमा (नागालैंड), मध्य क्षेत्र के लिए जबलपुर, उत्तरी पहाडी क्षेत्र के लिए पंतनगर और उत्तरी प्लेन क्षेत्रों के केंद्रों की समीक्षा करने के लिए धारवाड का दौरा किया। सभी यात्राओं को सारांशित करने, संस्थागत प्रबंधन समिति के साथ बैठक करने और सिफारिशों का मसौदा तैयार करने के लिए अंतिम बैठक 29 सितंबर 2023 को आयोजित की गई थी। इस बैठक में, क्युआरटी ने प्रायोगिक भुखंडों का दौरा किया और वैज्ञानिकों के साथ बातचीत की।

टॉक/सेमिनार/फील्ड डे/इंटरएक्शन मीट

ड्रोन का उपयोग कर रहा है। भारतीय परिदृश्य में, प्रो. वरप्रसाद ने कहा कि बीजों की समय पर उपलब्धता के कारण, किसानों को बीज उपचार के लिए पर्याप्त समय मिलता है, जिसमें सर्वोत्तम उत्पादन प्रौद्योगिकियों को अपनाना एक प्रेरक बल के रूप में कार्य करता है। इस अवसर पर संस्थान के निदेशक डॉ. के. एच. सिंह ने अतिथि वक्ता प्रो. वरप्रसाद को उनके अनुभवी उपदेश के लिए गुलदस्ता और स्मृति चिन्ह से सम्मानित किया।

डॉ. नाओकी यामानाका की वैज्ञानिक संवाद बैठक और वार्ता

जापान इंटरनेशनल रिसर्च सेंटर फॉर एग्रीकल्चर साइंसेज (जेआईआरसीएएस), त्सुकुबा, जापान के वरिष्ठ शोधकर्ता डॉ. नाओकी यामानाका ने 13 जनवरी, 2023 संस्थान का दौरा किया। आईसीएआर-आईआईएसआर, इंदौर में एक वैज्ञानिक संवाद बैठक का आयोजन किया गया. जिसमें डॉ. नाओकी यामानाका ने दक्षिण अमेरिका में किए गए एशियाई सोयाबीन रस्ट अनुसंधान कार्य पर अपना काम प्रस्तुत किया। इसके बाद चर्चा और प्रश्न उत्तर अनुभाग का गठन किया गया। एशियाई सोयाबीन रस्ट रिसर्च पर जिरकास के साथ सहयोग की संभावना पर चर्चा की गई। निदेशक डॉ. के. एच. सिंह ने डॉ. यमनका के कार्य की सराहना की और उनसे अनुरोध किया कि वे अपने द्वारा विकसित जीन पिरामिड लाइनों का उपयोग करके टिकाऊ रस्ट प्रतिरोधी किस्मों के विकास के लिए भारत में वैज्ञानिकों के साथ सहयोग करें। बाद में डॉ. यमनका ने आणविक प्रजनन और पौधे की पैथोलॉजी प्रयोगशालाओं और कांच के घरों में उगने वाले जर्मप्लाज्म का दौरा किया। जिरकास द्वारा विकसित सोयाबीन की आरपीपी जीन पिरामिड लाइनों को आईआईएसआर द्वारा सहयोगी अनुसंधान के लिए आयात किया गया था। बाद में उन्होंने सहयोग के लिए यूएएस, बैंगलोर और यूएएस, धारवाड़ के एआईसीआरपीएस केंद्रों का भी दौरा किया।

डॉ. प्रकाश कुमार झा द्वारा टॉक

मिसिसिपी स्टेट यूनिवर्सिटी में सहायक प्रोफेसर डॉ. प्रकाश कुमार झा ने 15 दिसंबर 2023 को सहयोगी अनुदान लिखने पर प्रमुख रणनीतियों पर बात की। उन्होंने अपनी प्रयोगशाला मिसिसिपी एग्रोक्लाइमेटोलॉजी लैब (एमएसीएलएबी) द्वारा जलवायु लचीली पहलों पर भी चर्चा की। उन्होंने जलवायु परिवर्तनशीलता के तहत बेहतर प्रबंधन रणनीतियों के लिए फसल मॉडलिंग, रिमोट सेंसिंग और जलवायु पूर्वानुमान आधारित निर्णय समर्थन प्रणालियों पर विद्वानों के साथ काम किया। उन्होंने प्रभावी अनुदान लिखने की प्रमुख रणनीतियों की व्याख्या की। उन्होंने कहा कि प्रभावी अनुदान लिखना एक ऐसी कला है जिसके लिए अनुसंधान, कहानी कहने और वित्तीय योजना के मिश्रण की आवश्यकता होती है।

ड्रोन प्रौद्योगिकी का प्रदर्शन

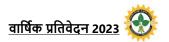
10 मार्च 2023 को, संस्थान ने आवश्यक संयंत्र संरक्षण उपायों के संचालन के लिए ड्रोन के उपयोग पर सफलतापूर्वक प्रदर्शन किया। इस अवसर पर निदेशक डॉ. के.एच. सिंह ने सोयाबीन से जुड़े वैज्ञानिकों, कर्मचारियों और अन्य हितधारकों को बधाई दी और आशा व्यक्त की कि इससे सोयाबीन में नुकसान पैदा करने वाले जैविक कारकों का प्रबंधन करने में मदद मिलेगी।

खरीफ मौसम के दौरान क्षेत्र प्रयोगों की निगरानी आईसीएआर-आईआईएसआर के निदेशक, डॉ. के.एच. सिंह, प्रभारी, फसल सुधार डॉ. अनीता रानी, प्रभारी, फसल उत्पादन डॉ. बी.यू. दुपारे, प्रभारी, फसल संरक्षण डॉ. महावीर शर्मा और प्रभारी, पीएमई डॉ. पूनम कुचलान की एक सिमिति ने 8 10 अगस्त, 2023 के दौरान क्षेत्र प्रयोगों की निगरानी की। सिमिति ने सभी वैज्ञानिकों के साथ उनके क्षेत्र प्रयोग स्थल पर बातचीत की और सुधार के उपायों का सुझाव दिया। इस आंतरिक निगरानी का उद्देश्य वैज्ञानिकों के बीच बातचीत को बढ़ाना और अनुसंधान प्रयोगों में सटीकता बढाना था।

विशिष्ट आगंतुक

श्री। मनोज आहूजा, सचिव, कृषि और किसान कल्याण विभाग, नई दिल्ली ने 27 जनवरी, 2023 को दौरा किया

डॉ. ए.के. सिंह, निदेशक, आईसीएआर-भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली, ने 13 मार्च, 2023 और 04 स्तअग, 2023 को संस्थान का दौरा किया


डॉ. मंगला राय, पूर्व महानिदेशक, आईसीएआर, नई दिल्ली, ने 04 अगस्त, 2023 को संस्थान का दौरा किया

डॉ. जे.के. जेना, डीडीजी (मत्स्यपालन), आईसीएआर नई दिल्ली, ने 15 सितंबर 2023 को संस्थान का दौरा किया

7. चल रहे अनुसंधान परियोजनाएं

परियोजना सं.	साल	परियोजना का शीर्षक	पीआई/सीसी-पीआई			
		क्रॉप इम्प्रूवमेंट				
मेगा थीम- सोयाबीन	। आनुवंशिक र	पंसाधन प्र <mark>बं</mark> धन- अधिग्रहण, संरक्षण, लक्षण व	र्णन, दस्तावेज़ीकरण और उपयोग			
एनआरसीएस 1.1/87	1987- एलटी	सोयाबीन जर्मप्लाज्म का संवर्धन, प्रबंधन और प्रलेखन	डॉ. संजय गुप्ता			
		याबीन का आनुवंशिक सुधार, कृषि संबंधी बीज की गुणवत्ता में सुधार	ो लक्षण, जैविक तनाव का प्रतिरोध			
आईआईएसआर 1.33/16	2016- एलटी	मार्कर सहायता प्राप्त चयन का उपयोग करके वाईएमवी प्रतिरोधी सोयाबीन किस्मों का विकास	डॉ. अनीता रानी			
आईआईएसआर 4.3/23	2023- 2028	सब्जी सोयाबीन की बीज दीर्घायु में वृद्धि (ग्लाइसिन मैक्स एलमेर।) जीनोटाइप	डॉ. पूनम कुचलान			
आईआईएसआर 4.4/23	2023- 2031	सोयाबीन में विभिन्न परिपक्वता अवधि के लिए उच्च अनाज और तेल उत्पादन के लिए ब्रीडिंग	डॉ. शिवकुमार एम			
आईआईएसआर 4.5/23	2023- 2031	चारकोल सड़ांध और एंथ्रेक्नोज रोगों के खिलाफ प्रतिरोध के लिए सोयाबीन प्रजनन	डॉ. नटराज वी.			
आईआईएसआर 3.12/19	2019- 2024	कीटों के विरूद्ध सोयाबीन में सुधार	डॉ. वंगला राजेश			
आईआईएसआर 4.6/23	2023- एलटी	सोयाबीन में आनुवंशिक आधार के विस्तार के लिए पूर्व-प्रजनन	डॉ. वंगला राजेश			
मेगा थीम- सोयाबीन	में वर्तमान औ	र भविष्य की जलवायु परिवर्तनशीलता के प्रभ	भाव का प्रबंधन करना			
डीएसआर 5.6ए/08	2009- एलटी	सोयाबीन में सूखा प्रतिरोध/सहिष्णुता किस्मों के लिए ब्रीडिंग	डॉ. ज्ञानेश के. सतपुते			
आईआईएसआर 7.8/23	2023- 2028	सोयाबीन में जल भराव सहिष्णुता के लिए ट्रेट पहचान और शारीरिक प्रजनन	डॉ. प्रिंस चोयाल			
आईएसएसआर 3.16/21	2021- 2026	सोयाबीन में बेहतर जड़ प्रणाली के लिए जीनों/एलओसीआई की पहचान	डॉ. गिरिराज कुमावत			
मेगा थीम- द्वितीयव	मेगा थीम- द्वितीयक कृषि और औद्योगिक उपयोगों के लिए विशेष सोयाबीन किस्मों का विकास					
एनआरसीएस 1.12/02	2002- एलटੀ	खाद्य ग्रेड वर्णों और उच्च तेल सामग्री के लिए ब्रीडिंग	डॉ. अनीता रानी			

आईआईएसआर	2020-	बेहतर तेल गुणवत्ता के साथ जीनोम	डॉ. मिलिंद बी. रत्नापरखे			
3.15/2020	2024	संपादित सोयाबीन लाइनों का विकास	डा. ामालद् बा. रतापरख			
		·				
क्रोप प्रोटेक्शन						
मेगा थीम- सोयाबीन में कीट कीट परिसर के लिए निगरानी, पूर्वानुमान और नियंत्रण रणनीतियां।						
आईआईएसआर	2022-	राइजोक्टोनिया एरियल ब्लाइट रोग के	डॉ. संजीव कुमार			
6.10/22	2027	खिलाफ सोयाबीन सुधार				
	2021-	सोयाबीन स्टेम फ्लाई के लिए कैरोमोन	डॉ. लोकेश कुमार मीणा			
आईआईएसआर	2024	और सेक्स फेरोमोन घटकों का				
3.13/21		आइसोलेशन और पहचान,				
		मेलानोएग्रोमाइज़ा सोजे प्रबंधन				
क्रोप प्रोडक्शन						
मेगा थीम- सोयाबीन आधारित फसल प्रणाली के लिए प्रौद्योगिकियों का विकास संसाधन संरक्षण						
प्रौद्योगिकियों, पोषक तत्व प्रबंधन के माध्यम से दक्षता में वृद्धि। पौधों की वृद्धि को बढ़ावा देने वाले रोगाणु और कृषि मशीनरी (एसडी बिलोर)						
आईआईएसआर	2020-	राइजोस्फीयर में बेहतर एएमएफ	I .			
3.12/2020						
वृद्धि, उत्पादन के लिए फाइटोहार्मोन और एएमएफ का अंतःक्रिया प्रभाव						
		एएमएफ का अतः।क्रया प्रमाव				
आईआईएसआर	2017-	सोयाबीन में बैक्टीरियल मीडिएटेड सल्फर	र श्री। हेमंत माहेश्वरी			
6.9/17	2020	जैव उपलब्धता				
आईआईएसआर	2023-	। सोयाबीन आधारित फसल प्रणालियों के तहत	। डॉ. राघवेंद्र एम			
6.10/23	2028	सोयाबीन उत्पादन अधिकतमकरण के लिए				
		टिकाऊ (प्राकृतिक / जैविक खेती / संरक्षण				
		कृषि) प्रबंधन प्रथाओं का मानकीकरण				
आईआईएसआर	2022-	। सोयाबीन आधारित फसल प्रणालियों मे	ं डॉ. राकेश कुमार वर्मा			
4.13/17	2027	संसाधन उपयोग दक्षता, मृदा गुणवत्ता और	3			
		फसल उत्पादकता को बनाए रखने/सुधारन				
		के लिए स्थायी ब्रॉड बेड फ्यूरो के साथ-साथ				
		पारंपरिक जुताई प्रथाओं के तहत अवशेष				
		प्रबंधन प्रथाओं का मूल्यांकन				
	1	विस्तार				
मेगा थीम- सोयाती	न के लिए य	चना डिजिटलीकरण, प्रौद्योगिकी प्रसार, प्र	भाव विश्लेषण और सामाजिक-			
	र्थेक अनुसंध		THE PROPERTY OF CHARMAN			
डीएसआर 7.7/23	2023-	सोयाबीन में ऑनलाइन मार्केटिंग के लिए	डॉ. सविता कोल्हे			
,	2025	बीज और उत्पाद बिक्री पोर्टल का विकास				
20 -5 20 -5 20	2020	1				
आईआईएसआर 8.17/20	2020- 2025	सोयाबीन के टीओटी के लिए आईसीटी उपकरणों और मीडिया का विकास और	डॉ. बी.यू. दुपारे			
0.1 // <u>Z</u> U	2023	। उपकरणा आर माडिया का विकास आर । मूल्यांकन				
		नूरवापमा				

आईआईएसआर 2023- 8.18/23 सोयाबीन के टीओटी के लिए विभिन्न विस्तार कार्यक्रम का उपयोग और प्रभावशीलता	डॉ. बी.यू. दुपारे
--	-------------------

बाह्य वित्त पोषित परियोजना

डीएसी, भारत सरकार	2005- एलटੀ	पौधों की किस्मों और किसानों के अधिकार के संरक्षण के लिए सोयाबीन-केंद्रीय क्षेत्र की योजना का डीयूएस परीक्षण।	डॉ. मृणाल के. कुचलान
आईसीएआर	2006-एलटी	आईसीएआर बीज परियोजनाः कृषि फसलों में बीज उत्पादन।	डॉ. मृणाल के. कुचलान
डीएसी, कृषि मंत्री	2018-2023	एनएफएसएम-तेल बीजों के तहत प्रमुख तिलहन फसलों की गुणवत्तापूर्ण बीज उपलब्धता बढ़ाने के लिए बीज हब का निर्माण	डॉ. मृणाल के. कुचलान
एसईआरबी, डीएसटी सरकार। भारत का	2022-2025	सोयाबीन (ग्लाइसिन मैक्स एल) में एन्थ्रेक्नोज़ प्रतिरोध में सुधार के लिए जीनोमिक्स रणनीतियाँ।	डॉ. मिलिंद बी. रत्नापर्ख
डीबीटी, भारत सरकार	2022-2025	मध्य प्रदेश फेज II में आठ आकांक्षी जिलों में बायोटेक- किसान हब की गतिविधियों का विस्तार	डॉ. राकेश कुमार वर्मा
एसईआरबी, डीएसटी, सरकार। भारत का	2021- 2024	सोयाबीन (ग्लाइसिन मैक्स एल) में चारकोल रॉट प्रतिरोध की जीनोम-वाइड एसोसिएशन मैपिंग	डॉ. नटराज वी.
बीआरएनएस, बीएआरसी, मुंबई	2022- 2025	केटीआई और एलओx2 मुक्त सोयाबीन गामा और इलेक्ट्रॉन बीम के उच्च ओलिक एसिड उत्परिवर्ती का विकास	डॉ. विनीत कुमार
डीबीटी भारत सरकार	2021- 2024	CRISPR/CAS9 मध्यस्थता मल्टीप्लेक्स जीनोम संपादन का उपयोग करके खाद्य ग्रेड सोयाबीन विकसित करना	डॉ. विनीत कुमार
एनएएसएफ, आईसीएआर	2022- 2025	मार्कर ने पीले मोज़ेक रोग प्रतिरोध, नल कुनिट्ज़ ट्रिप्सिन अवरोधक, नल लिपोक्सिजेनेज-2 जीन के ढेर की सहायता की, और सोयाबीन के आनुवंशिक आधार को व्यापक बनाया	डॉ. विनीत कुमार
डीबीटी भारत सरकार	2022- 2025	मार्कर ने बीज के अंतर्मुखीकरण में सहायता की वजन, प्रारंभिक परिपक्कता और फोटोपीरियड कई तनाव में प्रतिक्रिया जीन सहिष्णु जलवायु स्मार्ट सोयाबीन किस्म जेएस97-52 और केटीआई मुक्त किस्म एनआरसी 127	डॉ. शिवकुमार एम.
एनएएसएफ, आईसीएआर	2023- 2026	जीनोम संपादन का उपयोग करके तनाव सहनशीलता, पोषण गुणवत्ता और फसलों की उत्पादन में लक्षित सुधार	डॉ. अनीता रानी

8. प्रकाशन, पेटेंट, पुरस्कार और मान्यता

प्रकाशनों

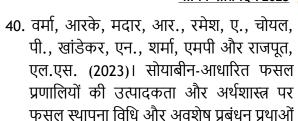
- अमरेट, पीके, श्रीवास्तव, एम., भाले, एमएस, अग्रवाल, एन., कुमावत, जी., शिवकुमार एम. और नटराज, वी. (2023)। भारत में उच्च उत्पादन वाले चारकोल सड़ांध प्रतिरोधी सोयाबीन जीनोटाइप की पहचान और आणविक लक्षण वर्णन। वैज्ञानिक रिपोर्टें. https://doi.org/10.1038/s41598-023-35688-2
- 2. बैस, डीएस, तिवारी, वी., कोल्हे, एस. और जैन, एस. (2023)। सटीक खेती-ए अध्ययन में सतत विकास के लिए मिट्टी और फसल स्वास्थ्य की निगरानी के लिए आईओटी और एआई सक्षम ढांचा। जैविक मंच.15(2): 742-749।
- 3. भारती, ए., महेश्वरी, एच.एस., गर्ग, एस., अनवर, के., पारीक, ए., सैटपुटे, जी.के., प्रकाश, ए. और शर्मा, एम.पी. (2023)। सोयाबीन में बेहतर सहजीवी प्रभावशीलता के लिए उच्च ट्रेहलोज-संचित सोयाबीन जीनोटाइप से संभावित सोयाबीन ब्रैडिराइजोबिया की खोज। अंतर्राष्ट्रीय माइक्रोबायोलॉजी. 26(4):1-15. डीओआई: 10.1007 / s10123-023-00351-
- 4. उत्पादन के लिए स्वदेशी और विदेशी सोयाबीन पहुंच का मूल्यांकन, फ्रॉग-आई लीफ स्पॉट और पीले मोज़ेक वायरस रोगों का प्रतिरोध। पौधे आनुवंशिक संसाधन: चरित्रीकरण और उपयोग। 1-7. डीओआई: 10.1017/एस1479262123000941।
- 5. चंद्रा, एस., कुमावत, जी., सैटपुट, जीके, भाटिया, वीएस, (2023) प्रजनन चरणों के दौरान उच्च तापमान सिहष्णुता के लिए सोयाबीन जीनोटाइप का मूल्यांकन। तिलहन अनुसंधान का जर्नल: 40 (विशेष मुद्दा): 90-91।
- 6. चंद्रा, एस., रत्नापरखे, एमबी, सैटपुट, जीके, गुप्ता, एस., कुमावत जी., एट अल। (2023) जीनोम वाइड एसोसिएशन अध्ययनों से सोयाबीन

- [ग्लाइसिन मैक्स (एल.) मेरर में जल लॉगिंग सिहष्णुता से जुड़े आनुवंशिक लोकी का पता चलता है।]. जर्नल ऑफ ऑयलसीड रिसर्च, 40 (विशेष मुद्दा): 36-37।
- 7. चौहान, जे., सिंह, पी., चोयाल, पी., मिश्रा, यू.एन., साहा, डी., कुमार, आर., अनुरागी, एच., पांडे, एस., बोस, बी., मेहता, बी. और डे, पी. (2023)। अजैविक तनाव के तहत पौधे का प्रकाश संश्लेषण: क्षति, अनुकूली और सिग्नलिंग तंत्र। प्लांट स्ट्रेस. https://doi.org/10.1016/j.stress.2023.100296
- 8. दुपारे, बी.यू. और कोल्हे, एस. (2023)। सोयाबीन उत्पादन प्रौद्योगिकियों के प्रसार के लिए सोशल मीडिया की प्रभावशीलता। सोयाबीन अनुसंधान 21(1): 87-97।
- 9. दुपारे, बी.यू. और कोल्हे, एस. (2023)। सोयाबीन प्रौद्योगिकियों के प्रभावी प्रसार के लिए आईसीटी और सोशल मीडिया डिजिटल पहल। जर्नल ऑफ ऑयलसीड्स रिसर्च, 40 (विशेष मुद्दा): 17-18।
- 10. द्विवेदी, आर., तिवारी, ए., भारिल, एन., रत्नापारखे, एमबी (2023) एसएनपी डेटा के क्लस्टिरंग के लिए एक नई सुविधा निष्कर्षण तकनीक। तिलहन अनुसंधान का जर्नल। 40 (विशेष मुद्दा): 222-223।
- 11. जायसवाल, एस., भट्ट, जे., राजपूत, एल., महेश्वरी, एच.एस., वेंनामपल्ली, एन., कुमार, एस., पांडे, वी. और शर्मा, एमपी (2023)। सोयाबीन बैक्टीरियल एंडोफाइट्स बेसिलस सबटिलिस (ईबी-1) और बेसिलस एमिलोलिकफेशियंस (ईबी-2) पत्ती और मिट्टी में एंथ्रेक्नोज उत्तरजीविता के खिलाफ। जैविक मंच-एक अंतर्राष्ट्रीय जर्नल। 15(10): 1305-1309.
- 12. जायसवाल, एस., राजपूत, एल., भट्ट, जे., महेश्वरी, एचएस, कुमार, एस., शर्मा, एमपी, वेंनामपल्ली, एन., पांडे, वी., शिवकुमार, एम.,

शर्मा, आर. और बेहरा, के. (2023)। कर्नाटक राज्य से एकत्र की गई एंथ्रेक्नोज बीमारी के खिलाफ सोयाबीन बैक्टीरियल एंडोफाइट्स: एक इन-विट्रो अध्ययन। पर्यावरण और जलवायु परिवर्तन का अंतर्राष्ट्रीय जर्नल। 13 (11):1835-1845. डीओआई:

- 13. झा, पी., तिवारी, ए., भारिल, एन., रत्नापरखे, एमबी, पटेल, ओ.पी. एट अल। (2023). सोयाबीन पत्ती रोग का पता लगाने के लिए मशीन लर्निंग एल्गोरिथ्म। जर्नल ऑफ ऑयलसीड्स रिसर्च, 40 (विशेष मुद्दा): 170-171।
- 14. झा, पी., तिवारी, ए., भारिल, एन., रत्नापरखे, एमबी, पटेल, ओपी, हरशिथ, एन. एट अल। (2023). प्रोटीन अनुक्रम और उनके क्लस्टरिंग प्रदर्शन विश्लेषण के लिए अपाचे स्पार्क आधारित स्केलेबल विशेषता निष्कर्षण दृष्टिकोण। इंटरनेशनल जर्नल ऑफ डेटा साइंस एंड एनालिटिक्स। 15(4):359-378.
- 15. जुमरानी, के., भाटिया, वी.एस., कटारिया, एस. एट अल। (2023) सोयाबीन में नाइट्रोजन स्थिरीकरण, प्रकाश संश्लेषण, क्लोरोफिल फ्लोरोसेंस, बीज उत्पादन और गुणवत्ता पर उच्च तापमान और पानी की कमी के तनाव का इंटरैक्टिव प्रभाव (ग्लाइसिन मैक्स)। पादप फिजियोल. प्रतिनिधि https://doi.org/10.1007/s40502-023-00763-3
- 16. कालिरया, केए, शाही, डी., सारण, पीएल, मीना, आरपी, गजिभये, एन., चोयल, पी. और रॉय, एस. (2023)। वृद्धि, फिजियो-बायोकेमिकल परिवर्तनों और विधानिया सोम्निफेरा (लिन) की उत्पादन हानि पर ब्रूमरेप परजीवी सिर हिलाने के प्रभाव। दुनाल संयंत्र। वेगेटोस। https://doi.org/10.1007/s42535-023-00628-y
- 17. कोराबोयाना, वी., गिल, बीएस, सिरारी, ए., खोसला, जी., बिंद्रा, एस. और कुमार, वी. (2023)। पैरेंट जीनोम योगदान और सोयाबीन

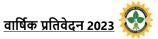
- (ग्लाइसिन मैक्स) की बैकक्रॉस-व्युत्पन्न लाइनों में अनाज उत्पादन के साथ इसका संबंध। पादप प्रजनन 142(2): 140 148. https://doi.org/10.1111/pbr.13073
- 18. कुचलान, एमके, कुचलान, पी., श्रीवास्तव, एम. (2023) बीज अंकुरण क्षमता में सुधार और वनस्पति सोयाबीन की अनुकूलन क्षमता (ग्लाइसिन मैक्स मेरर)।). जर्नल ऑफ ऑयलसीड रिसर्च, 40 (विशेष मुद्दा): 408-409।
- 19. कुचलान, पी. और कुचलान, एमके (2023)। सोयाबीन के पौधे फिजियोलॉजिकल और येल्ड ट्रेट्स पर सैलिसिलिक एसिड का प्रभाव। लेग्यूम रिसर्च- एक अंतर्राष्ट्रीय जर्नल। 46 (1): 56-61.
- 20. कुमार, एस., राजपूत, एल.एस., नटराज, वी., शिवकुमार, एम., महेश्वरी, एच.एस., नरगुंड, आर., कुमावत, जी., जायसवाल, एस., सिंह, जे.के., केशरवानी, ए.के. और यादव, एमके (2023)। भारत में सोयाबीन क्षेत्रों में कोलेटोट्रिचम ट्रनकैटम के लिए वैकल्पिक मेजबान के रूप में मिल्कवीड (यूफोरबिया जेनिकुलेटा) की पहली रिपोर्ट। पौध रोग. 107(12), पृ.4025।
- 21. कुमावत, जी., शिवकुमार, एम., श्रीवास्तव, एच., यादव, ए., नटराज, वी., चंद्र, एस., राजेश, वी., सैटपुटे, जीके, रत्नापारखे, एम. और गुप्ता, एस. (2023)। सोयाबीन में बीज संख्या/पौधे के लिए प्लेयोट्रॉपी के साथ एक सुसंगत 100-बीज वजन QTL (ग्लाइसिन मैक्स L.)। तिलहन अनुसंधान का जर्नल। 40 (विशेष मुद्दा): 25-26.
- 22. लाड, पी., पटेल, पी., गुरुप्रसाद, के.एन., शर्मा, एमपी, कटारिया, एस. और ब्रेस्टिक, सी. (2023)। ग्लाइसिन मैक्स के प्रकाश संश्लेषित मापदंडों पर यूवी बहिष्करण और एएमएफ इनोक्यूलेशन का प्रभाव। फोटोसिंथेटिका 61 (विशेष मुद्दा): 236-243। डीओआई: https://10.32615/ps.2023.014
- 23. मडार, आर., नामदेव, एस., वर्मा, आरके, रमेश, ए. और शर्मा, एमपी (2023)। सोयाबीन


गेहूं फसल प्रणाली के तहत मृदा स्वास्थ्य और अनाज की गुणवत्ता के पहलुओं पर संरक्षण जुताई और कृषि जैव किलेबंदी रणनीतियों का प्रभाव। तिलहन अनुसंधान का जर्नल। 40 (विशेष मुद्दा):4-6.

- 24. महोबिया, सी., कोल्हे, एस. और अय्यर, एस. (2023)। रैंडम फॉरेस्ट क्लासिफायर का उपयोग करके सोयाबीन पौधों के कीट और पत्ती रोग का हाइब्रिड फीचर आधारित वर्गीकरण। इंटरनेशनल जर्नल ऑफ इंजीनियरिंग ट्रेंड्स एंड टेक्नोलॉजी। 71(2): 408-420.
- 25. Mandloi, S., Jaiswal, S., Rajput, LS, Kumar, S., Nataraj, V., Maheshwari, HS, Sharma, R., Pandey, V., Bhatt, J. (2023) कोलेटोट्रिचम ट्रक्टेटम के खिलाफ फंगिसाइड्स का इन-विट्रो मूल्यांकन जिससे सोयाबीन का एंथ्रेक्नोस होता है। सोयाबीन अनुसंधान 21(1): 1-131
- 26. मरन्ना, एस., कुमावत, जी., नटराज, वी., गिल, बीएस, नारगुंड, आर., शर्मा, ए., राजपूत, एलएस, रत्नापारखे, एमबी और गुप्ता, एस. (2023)। सोयाबीन (ग्लाइसिन मैक्स) में अतिरिक्त प्रारंभिक परिपक्वता, उच्च उत्पादन और मुंगबीन येलो मोज़ेक इंडिया वायरस (एमवाईएमआईवी) प्रतिरोध के लिए बेहतर जीनोटाइप का विकास। क्रॉप और पस्चर साइंस। 74(12) 1165-1179 https://doi.org/10.1071/CP223391
- 27. मरन्ना, एस., कुमावत, जी., नटराज, वी.,गिल, बी.एस., मदार, आर. और गुप्ता, एस. (2023) अनाज उत्पादन के लिए आनुवंशिक वृद्धि और ग्लाइसिन सोजा से आत्मिनरीक्षण के माध्यम से मुंगबीन पीले मोज़ेक इंडिया वायरस (एमवाईएमआईवी) प्रतिरोध। तिलहन अनुसंधान का जर्नल। 40 (विशेष मुद्दा): 2-3.
- 28. मीना, एलके, राजेश, वी. और शर्मा, ए.एन. (2023)। सोयाबीन के कीट-पीड़कों पर जीनोटाइपिक विविधता का प्रभाव। लेग्यूम रिसर्च। 46(1): 119-123.

- 29. नायडू जीके, हुइलगोल, एसएन, सोमनागौडा, जी., एट अल। (2023) भारत के दक्षिणी क्षेत्र में उत्पादन और जंग प्रतिरोध के लिए कुलीन सोयाबीन जीनोटाइप का मूल्यांकन। तिलहन अनुसंधान का जर्नल। 40 (विशेष मुद्दा): 177-178।
- 30. नायर, आरएम, बोड्डेपल्ली, वी.एन., यान, एमआर, कुमार, वी., गिल, बी., पान, आरएस, वांग, सी., हार्टमैन, जीएल, सूजा, आरएस और सोमटा, पी. (2023)। वनस्पति सोयाबीन की वैश्विक स्थिति। संयंत्र। 12(3): 609. https://doi.org/10.3390/plants1203060 91
- 31. नटराज, वी., अमरेट, पीके, रत्नापरखे, एमबी, मराणा, एस., एट अल। (2023) सोयाबीन में चारकोल सड़ांध प्रतिरोध पर जीनोम-वाइड एसोसिएशन अध्ययन (ग्लाइसिन मैक्स, एल.) जर्नल ऑफ ऑयलसीड रिसर्च। 40 (विशेष मुद्दा): 3-4।
- 32. पाडलकर, जी., मंडलिक, आर., सुधाकरन, एस., वैट्स, एस., कुमावत, एस., कुमार, वी., रानी, ए., रत्नापरखे, एम. एट अल। (2022). स्टेपल-फूड ग्रेड सोयाबीन की पोषण क्षमता की खोज के लिए आवश्यकता और चुनौतियां। जर्नल ऑफ फूड कंपोजिशन एंड एनालिसिस। 117.105093.10.1016/j.jfca.2022.105093.
- 33. रघुवंशी, आर., बिरला, एस., नागाराम, कविश्वर आर., एट अल., (2023) जेनोम-वाइड एसोसिएशन स्टडी (जीडब्ल्यूएएस) ने सोयाबीन में राइजोक्टोनिया हवाई ब्लाइट प्रतिरोध से जुड़े प्रमुख लोकी का खुलासा किया। तिलहन अनुसंधान का जर्नल। 40 (विशेष मुद्दा): 82.
- 34. राजेश, वी., गुप्ता, एस., कुमावत, जी., पांडेय, एन., चंद्रा, एस., एट अल (2023) भारतीय परिस्थितियों में वनस्पति प्रकार के लिए विदेशी सोयाबीन जर्मप्लाज्म (ग्लाइसिन मैक्स (एल.) मेरिल) में उत्पादन और उत्पादन घटक लक्षणों

- का आनुवंशिक विश्लेषण। तिलहन अनुसंधान का जर्नल। 40 (विशेष मुद्दा): 100-102।
- 35. रामटेके, आर., दलाल, एस., राजपूत, एलएस, नटराज, वी., माराना, एस. (2023) स्क्लेरोटियम रोल्फसी सैक के कारण कॉलर रॉट रोग के खिलाफ सोयाबीन जीनोटाइप का मूल्यांकन। तिलहन अनुसंधान का जर्नल। 40 (विशेष मुद्दा): 181-182।
- 36. रत्नापरखे, एमबी, सैटपुटे, जीके, रघुवंशी, आर., चंद्रा, एस. एट अल। (2023). जीडब्ल्यूएएस और ट्रांसक्रिप्टोम विश्लेषण सोयाबीन में सूखा सिहष्णुता से जुड़ी प्रमुख लोकी को प्रकट करते हैं: जीडब्ल्यूएएस और ट्रांसक्रिप्टोम विश्लेषण सोयाबीन में सूखा सिहष्णुता से जुड़ी प्रमुख लोकी को प्रकट करते हैं। (2023). जर्नल ऑफ ऑयलसीड्स रिसर्च, 40 (विशेष अंक) 20-21।
- 37. शनमुगैया, वी., गौबा, ए., हरी, एसके, प्रसाद, अार., राममूर्ति, वी. और शर्मा, एमपी (2023)। पर्यावरणीय तनाव को कम करके पौधों की वृद्धि को उत्तेजित करने में पौधों के सेलुलर सिग्नलिंग कैस्केड पर सिलिकॉन माइक्रोन्यूट्रिएंट का प्रभाव। प्लांट ग्रोथ विनियमन। 100: 391-408 https://doi.org/10.1007/s10725-023-00982-61 null
- 38. शर्मा, एमपी, भारती, ए., चौरसिया, डी., एट अल। (2023) सोयाबीन उत्पादन और मिट्टी कार्बन सीक्रेस्ट्रेशन में सुधार के लिए माइक्रोबियल सिम्बायोंट की खोज। जर्नल ऑफ ऑयलसीड रिसर्च, 40 (विशेष मुद्दा): 465-466।
- 39. श्रीनिवासा, वी., बाबू, पीकं, सूगन्ना, डी., चंद्रा, एस., नारगुंड, आर., अमरेश, लाल, एसकं (2023)। नई स्क्रीनिंग विधि का मानकीकरण और इन-विट्रो स्थितियों के तहत सीडिंग स्टेज सूखा सिहष्णुता के लिए सोयाबीन (ग्लाइसिन मैक्स (एल) मेरिल) जीनोटाइप का मूल्यांकन। एशिया में कृषि मशीनीकरण। 54(8): 15061-15076.


का प्रभाव। तिलहन अनुसंधान जर्नल, 40 (विशेष

मुद्दा): 19-20।

पुस्तकें और पुस्तक अध्याय

- 1. चौरसिया, डी., बुवाडे, आर., गजघाटे, आर., भारती, ए., प्रकाश, ए., गुप्ता, एम. और शर्मा, एमपी (2023)। विभिन्न कृषि प्रबंधन प्रथाओं और पर्यावरणीय तनावों के तहत आर्बस्कुलर माइकोराइज़ल फुंगी की जैव विविधता और पारिस्थितिकी तंत्र को पुनर्जीवित करना: कृषि और खाद्य पदार्थों (ईडी) के लिए अनुप्रयुक्त माइकोलॉजी में। एसके सिंह एट अल., प्रथम संस्करण) सीआरसी प्रेस (टेलर फ्रांसिस); पृष्ठ 53-78। डीओआई: 10.1201/9781003369868-4
- 2. कुमार, सिंह एसए, शर्मा, एमपी, सिंह, एमके और सिंह, टी. (2023)। ऑर्गेनिक सोया प्रोटीन हाइड्रॉलिसेट एक खाद्य पूरक के रूप में और व्यावसायीकरण के लिए इसकी तकनीकी व्यावसायिक व्यवहार्यता के रूप में। इन: ऑर्गेनिक एग्री-प्रोडक्ट्स को प्रोसेस्ड फूड प्रोडक्ट्स (ईडीएस) में बदलना। दीपक कुमार एट अल।) Apple Academical Press Inc. बोका रेटन, एफएल, यूएसए पीपी 470।
- 3. नटराज, वी., राजपूत, एलएस, शिवकुमार, एम., कुमावत, जी., कुमार, एस., महेश्वरी, एचएस और रत्नापारखे, एमबी (2023)। आणविक प्रजनन दृष्टिकोणों का उपयोग करके कोलेटोट्रिचम टूनकैटम के खिलाफ फसल सुधार। फसल इम्प्रोवमेंट में QTL मैपिंग में (पीपी)। 45-56). अकादिमक प्रेस.
- 4. राजपूत, एल.एस., कुमार, एस., नटराज, वी., शिवकुमार, एम., पाठक, के., जायसवाल, एस., महेश्वरी, एच.एस., ... और पांडे, वी. (2023)। मैक्रोफोमिना फेसोलिना के कारण सोयाबीन चारकोल सडांध के प्रबंधन में हाल ही

में उन्नति। मैक्रोफोमिना फेसोलिना में (पीपी. 55-74. अकादमिक प्रेस.

पॉप्युलर लेख

- राजपूत, एल.एस., शर्मा, आर., सिंह, के.अग्रवाल, एस.के., कुमार, एस. और महेश्वरी, एच.एस. (2023)। प्लांट डिजीज रेसिस्टेंस ब्रीडिंग में WRKY ट्रांसक्रिप्शन फैक्टर्स की भूमिका। एग्रीकोस ई-न्यूज़लेटर। 12(04). 155-157.
- दुपारे, बी. यू. राघवेंद्र निर्गुंड, राकेश कुमार वर्मा और के. एच। सिंह. सोयाबीन उत्पादन की 2023 उन्नत तकनीक एवं नवीनतम विधियाँ। किसान की गाथा. भोपाल 1-31 जुलाई 2023. पेज नं. 12.
- 3. सलोनी मंडलोई, वी. नटराज, बी. यू. दुपारे, संजीव कुमार, शिवकुमार, एम और राजकुमार रामटेक। 2023. सोयाबीन की खेती में ग्रीष्मकालीन गहरी जुताई का महत्व। किसान की गाथा. भोपाल 1-30 अप्रैल 2023. पेज नं. 13
 - 4. सलोनी मंडलोई, वी. नटराज, शिवकुमार, एम, और बी। यू. डुपारे, 2023। सोयाबीन चारकोल सूडान रोग के लक्षण और नियंत्रण के उपाय। किसान की गाथा. भोपाल 1-31 जनवरी 2023. पेज नं. 5.

तकनीकी/विस्तार बुलेटिन/फोल्डर

- दुपारे बीयू, वर्मा, आरके, नारगुंड, आर., मीना, एलके, कुमार, एस., कुचलन, एम. और सिंह, के.एच. (2024)। सोयाबीन उत्पादन के आधुनिक तरीके और तकनीकी सिफारिशें। xटेंशन बुलेटिन नं। 19. आईसीएआर-भारतीय सोयाबीन अनुसंधान संस्थान, प्रकाशन। पीपी 74. दुपारे, बीयू, वर्मा, आरके, नारगुंड, आर., मीना, एलके, कुमार, एस., कुचलान, एमके और सिंह, केएच (2023)। सोयाबीन उत्पादन के आधुनिक तरीके और तकनीकी सिफारिश। एक्सटेंशन बुलेटिन नं। 19 (2024)। निदेशक, आईसीएआर-भारतीय सोयाबीन अनुसंधान संस्थान, इंदौर द्वारा प्रकाशित पृष्ठ 74.
- कुचलान, पी. कुचलान, एमके और खान। आईआर (2023)। संपादित राजभाषा पत्रिका सोयावृतिका बीज विशेषांक खंड(2) आईसीएआर-भारतीय

सोयाबीन अनुसंधान संस्थान इंदौर, मध्य प्रदेश और भारत। पृष्ठ 83.

- कुचलान, एमके और कुचलान, पी. (2023) सोयाबीन की मौजूदा किस्मों, आईसीएआर भारतीय सोयाबीन अनुसंधान संस्थान, इंदौर,मध्य प्रदेश और भारत की डीयूएस विशेषताओं का संकलन पृष्ठ 86।
- दुपारे, बी. यू. 2023. अधिक उत्पादन एवं कम खर्च की खेती हेतु सोयाबीन फसल में क्या नहीं करें ? विस्तार फोल्डर 24 (2024)।
- दुपारे, बी.यु. 2023 अधिक उत्पादन हेतु सोयाबीन फसल में क्या, क्यों, कब, और कैसे करें ? विस्तार फोल्डर 25 (2024)|
- दुपारे, बी.यु., राकेश कुमार वर्मा, राघवेन्द्र नर्गुंद, लोकेश कुमार मीणा, संजीव कुमार, मृणाल कुचलान एवं के. एच. सिंह 2024 सोयाबीन की आधुनिक खेती: तकनिकी अनुशंसाएं तकनीकी बुलेटिन क्रमांक 19 भा.कृ.अनु.प.-भारतीय सोयाबीन अनुसन्धान संस्थान प्रकाशन इंदौर पृष्ठ -74।
- दुपारे, बी.यु., राकेश कुमार वर्मा, राघवेन्द्र नर्गुंद, लोकेश कुमार मीणा, संजीव कुमार, मृणाल कुचलान एवं के. एच. सिंह 2023 सोया कृषकों के लिए साप्ताहिक सलाह (खरीफ 2023) तकनीकी बुलेटिन 2023 (4) भा.कृ.अनु.प.-भारतीय सोयाबीन अनुसन्धान संस्थान प्रकाशन इंदौर पृष्ठ -84|
- नेहा पांडे, एम. पी। शर्मा, अभिषेक भारती, योगेश सोहनी (2023), सोयाबीन प्रसंस्करण, मूल्यवर्धन और उप-उत्पाद उपयोगी विभिन्न तकनीकी बुलेटिन, पृष्ठ 26, भा.कृ.अनु.प.-भारतीय सोयाबीन अनुसन्धान संस्थान इंदौर

सम्मेलन प्रस्तुतियों/प्रदर्शनियों में भाग लिया

- कुमावत, जी., मरन्ना, एस., श्रीवास्तव, एच., यादव, ए., नटराज, वी., चंद्र, एस., राजेश, वी., सैटपुटे, एसके, रत्नापारखे, एम. और गुप्ता, एस. (2023)। सोयाबीन (ग्लाइसिन मैक्स एल) में प्रति पौधे बीज संख्या के लिए प्लेयोट्रॉपी के साथ एक सुसंगत 100-बीज वजन QTL। सार की पुस्तक में, वनस्पति तेलों, आईसीएआर-आईआईओआर, हैदराबाद पर अंतर्राष्ट्रीय सम्मेलन, 17-21 जनवरी, 2023।
- कुचलान, एम.के. कुचलान पी और श्रीवास्तव एम (2023) बीज अंकुरण क्षमता में सुधार और वनस्पति सोयाबीन की अनुकूलन क्षमता (ग्लाइसिन मैक्स

- एल)। Merr.). वनस्पति तेलों (आईसीवीओ 2023) में अंतर्राष्ट्रीय सम्मेलन के दौरान प्रस्तुत: आईसीएआर-भारतीय तिलहन अनुसंधान संस्थान, हैदराबाद द्वारा 17-21 जनवरी, 2023 से आयोजित अनुसंधान, व्यापार, मूल्य श्रृंखला और नीति। तिलहन अनुसंधान 39 (विशेष मुद्दा): 408-409
- कोल्हे, एस., सक्सेना, ए. और डुपारे, बीयू। (2023)।
 डिजिटल मार्केटिंग के लिए बीज और उत्पाद बिक्री पोर्टल का विकास। अंतर्राष्ट्रीय सम्मेलन की कार्यवाही में, "दलहन: कृषि स्थिरता और पोषण सुरक्षा के लिए स्मार्ट क्रॉप्स", फरवरी 10-12, 2023 एनएएससी, नई दिल्ली-110012, पृष्ठ 376।
- डॉ. सिवता कोल्हे ने इमर्जिंग ट्रेंड एंड टेक्नोलॉजीज ऑन इनटेलिजेंट सिस्टम्स (ईटीटीआईएस-2023) पर तीसरे अंतर्राष्ट्रीय सम्मेलन में एनसीए आधारित फीचर चयन के साथ बेसियन ऑप्टिमाइज्ड-केएनएन क्लासिफायर का उपयोग करके सोयाबीन लीफ डिजीज के चित्रण के लिए पेपर ए नोवेल एप्रोच प्रस्तुत किया। संगठन का नाम: प्लेएस्टी, रोमानिया के पेट्रोलियम-गैस विश्वविद्यालय और हाउटे-अलसैस विश्वविद्यालय, फ्रांस के सहयोग से सीडैक, 23-24 फरवरी 2023।
- डॉ. सिवता कोल्हे ने इंडियन सोसाइटी फॉर ऑयलसीड्स रिसर्च, आईसीएआर-आईआईओआर, हैदराबाद, 17-21 जनवरी 2023 द्वारा आयोजित वनस्पित तेल 2023 (आईसीवीओ 2023) पर अंतर्राष्ट्रीय सम्मेलन में सोयाबीन प्रौद्योगिकियों के प्रभावी प्रसार के लिए पेपर आईसीटी और सोशल मीडिया डिजिटल पहल प्रस्तुत की।
- डॉ. सविता कोल्हे ने दलहन पर अंतर्राष्ट्रीय सम्मेलन में डिजिटल मार्केटिंग के लिए बीज और उत्पाद बिक्री पोर्टल का पोस्टर विकास प्रस्तुत किया: कृषि स्थिरता और पोषण सुरक्षा के लिए स्मार्ट फसल, फरवरी 10-12, 2023 को एनएएससी, नई दिल्ली में।
- शर्मा एमपी, भारती ए, चौरसिया डी, अग्निहोत्री आर, माहेश्वरी एचएस और ए रमेश (2023)। सोयाबीन उत्पादन और मृदा कार्बन पृथक्करण में सुधार के लिए माइक्रोबियल सिम्बायोंट की खोज। वनस्पति तेलों में अंतर्राष्ट्रीय सम्मेलन (आईसीवीओ 2023): 17-21 जनवरी, 2023 से आईसीएआर-भारतीय तिलहन अनुसंधान संस्थान, हैदराबाद द्वारा आयोजित अनुसंधान, व्यापार, मूल्य श्रृंखला और नीति।

- शर्मा एमपी (2023) सोयाबीन उत्पादन में बायोफर्टिलाइजर एप्लिकेशन, सीओ 2 मिटिगेशन और कृषि क्षेत्र में व्यावसायिक अवसर। "उद्योग 5.0 और प्रतिमान शिफ्ट: एसटी के सहयोग से इमर्जिंग चैलेंज पर आयोजित बहु-विषयक अंतर्राष्ट्रीय कांग्रेस संमंत्रण के दौरान प्रस्तुत।" क्लाउड स्टेट यूनिवर्सिटी, मिनेसोटा, यूएसए श्री वैष्णव विद्यापेठ विश्वविद्यालय, इंदौर में 1-3, फरवरी, 2023 से।
- डॉ. बी.यू. दुपारे ने 24-26 मई 2023 को इंदौर के कृषि महाविद्यालय में आयोजित मालवा किसान मेला में भाग लिया।
- डॉ. बीयू दुपारे ने 18-20 जनवरी 2023 को पीजेटीएसएयू, हैदराबाद में आईसीवीओ के दौरान कृषि प्रदर्शनी में भाग लिया।
- डॉ. बीयू दुपारे ने 18-20 जनवरी 2023 को कालिदास अकादमी, उज्जैन में आयोजित शाइनिंग मध्य प्रदेश में भाग लिया।
- ज्ञानेश कुमार सतपुते, निष्ठा शेष, मिलिंद बी रत्नापरपखे, संजय गुप्ता, गिरिराज कुमावत, विराज जी. कांबले, सुभाष चंद्र, प्रिंस चोयाल और राकेश कुमार वर्मा (2023)। फिनोटाइपिंग रूट सिस्टम: कम मिट्टी की नमी के तहत सोयाबीन की उत्पादकता के लिए नीचे जमीन की वास्तुकला का डायनामिक्स। सार में. विश्व सोयाबीन अनुसंधान सम्मेलन 11 (डब्ल्यूएसआरसी 11): सतत विकास के लिए सोयाबीन अनुसंधान (ईडीएस)। वॉलमैन, जे., वासिलजेविक, एम., रिटलर, एल., मिलाडिनोविक, जे., और मफीं-बोकर्न, डी.) 18-23 जून 2023, वियना, ऑस्ट्रिया पेपर नं। 462 पृष्ठ217 https://doi.org/10.5281/zenodo.7974681
- दुपारे, बी.यू. और शर्मा पी. 2023. मध्य प्रदेश में सोयाबीन उत्पादन पर जलवायु परिवर्तन के प्रभाव के बारे में सोयाबीन उत्पादकों की धारणा। राष्ट्रीय सेमिनार की कार्यवाही । किसानों की आजीविका और खाद्य सुरक्षा-कृषि विस्तार रणनीति और उपकरणों को बढ़ाने के लिए जलवायु स्मार्ट कृषि पर राष्ट्रीय सेमिनार की स्मारिका और सार । 7-8 मई, 2023 के दौरान डॉ. बालासाहेब सावंत कोंकण कृषि विद्यापीठ, दापोली में महाराष्ट्र सोसायटी ऑफ xेटंशन एजुकेशन द्वारा उन्मुख पृष्ठ -108.
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने 17-21 जनवरी, 2023 के दौरान आईआईओआर, हैदराबाद द्वारा आयोजित अनुसंधान, व्यापार, मूल्य श्रृंखला और

नीति पर वनस्पति तेल 2023 (आईसीवीओ 2023) पर अंतर्राष्ट्रीय सम्मेलन में भाग लिया

- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने विभाग द्वारा आयोजित कृषि पर जी20 साइड इवेंट में भाग लिया। कृषि की, एमपी सरकार। 13 फरवरी, 2023 को इंदौर में।
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने 02 मार्च 2023 को एनएससी, इंदौर द्वारा आयोजित बीज उत्पादन पर उत्पादकों, किसानों और अधिकारियों की एक दिवसीय बैठक में मुख्य अतिथि के रूप में भाग लिया।
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने 04-06 मार्च 2023 के दौरान एनएएससी, नई दिल्ली में निदेशक सम्मेलन और आईसीएआर-उद्योग बैठक में भाग लिया।
- निदेशक डॉ. कुंवर हरेन्द्र सिंह ने सीएसएन और आरवी से संबंधित अधिसूचना पर सीएससी की 90वीं बैठक में भाग लिया। आयुक्त (क्यूसी) जीओआई, बीज प्रभाग, कृषि मंत्रालय। 02.05.2023 को।
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने 10.05.2023 को आईआईएसआर इंदौर में एआईसीआरपी तिलहन और दालों में रोगाणुओं के संभावित उपयोग पर बातचीत सत्र में भाग लिया: आईआईएसआर इंदौर में माइक्रोबायोलॉजी अनुशासन को मजबूत करना और सुव्यवस्थित करना।
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने 22.05.2023 और 12.06.2023 को वर्चुअल मोड में संयंत्र जर्मप्लाज्म पंजीकरण समिति की XXXXX बैठक में भाग लिया।
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने ब्रिलियंट कन्वेंशन सेंटर इंदौर एमपी में 9वें अंतर्राष्ट्रीय सोया खाद्य सम्मेलन में भाग लिया। 22-23 जून 2023 के दौरान।
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने 18.08.2023 को सीआईएई, भोपाल में XXVII (27वीं) आईसीएआर क्षेत्रीय समिति संख्या VII की बैठक में भाग लिया।
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने 07-08, अक्टूबर, 2023 के दौरान सोपा, इंदौर में अंतर्राष्ट्रीय सोया कॉनक्लेव 2023 में सोयाबीन प्रजनन में नवीनतम विकास पर एक प्रस्तुति दी।

- डॉ. कुंवर हरेंद्र सिंह, निदेशक ने 27.10.2023 को कालिदास सेमिनार हॉल आईआईटी इंदौर में सीआरडीटी आईआईटी इंदौर के तहत "कृषि स्टार्टअप में स्थिरता बनाए रखना" पर एक दिवसीय कार्यशाला के लिए एक पैनल सदस्य के रूप में भाग लिया
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, ने उत्तर प्रदेश के आरएलबीसीएयू, झांसी में 19-21 नवंबर, 2023 से मध्य भारत में खाद्य सुरक्षा के लिए दाल, तिलहन और बाजरा के घटिया उत्पादन के लिए अनुसंधान एवं विकास रणनीति पर राष्ट्रीय संगोष्ठी में भाग लिया ।
- डॉ. कुंवर हरेन्द्र सिंह, निदेशक, आईसीएआर, कृषि भवन, नई दिल्ली से वर्चुअल मोड/वेबकास्टिंग के माध्यम से आईसीएआर क्षेत्रीय सिमति ॥। की XXVI बैठक में भाग लिया, जिसका आयोजन दिनांक 01.12.2023 को एनईएच क्षेत्र, उमियम के लिए आईसीएआर-आईसीएआर रिसर्च कॉम्प्लेक्स द्वारा किया गया था।

रेडियो वार्ताफिल्म /दूरदर्शन पर प्रसारण/ निर्माण

- डॉ. बी. यू. दुपारे द्वारा सोयाबीन उत्पादन तकनीकों के प्रसार हेतु विधियाँ दिनांक 14 अगस्त 2023 को आकाशवाणी इंदौर द्वारा खेती गृहस्थी कार्यक्रम में प्रसारित।
- डॉ. बी. यू. दुपारे का प्रगतिशील सोया कृषक श्री योगेन्द्र पंवार के साथ सोया संवाद दिनांक 11 अप्रैल को इंदौर आकाशवाणी से खेती गृहस्थी कार्यक्रम में प्रसारित।
- डॉ. बी. यू. दुपारे का डॉ. विनीत कुमार एवं प्रगितिशील सोया कृषक श्री धर्मेन्द्र यादव के साथ "सोयाबीन किस्में 7 और 138 में क्या समानता है" विषय पर सोया संवाद दिनांक 12 अप्रैल को इंदौर आकाशवाणी से खेती गृहस्थी कार्यक्रम में प्रसारित |
- डॉ. बी. यू. दुपारे विषय सोयाबीन में कीट एवं रोग नियंत्रण दूरदर्शन किसान चैनल पर दिनांक 20 सितम्बर 2023 को सजीव प्रसारण |
- डॉ. बी. यू. दुपारे विषय- सोयाबीन की उन्नत किस्में और बुअई दूरदर्शन किसान चैनल पर दिनांक 14 जून 2023 को सजीव प्रसारण |

डॉ. बी. यू. दुपारे (संकल्पना, स्क्रिप्ट लेखन, संकलन एवं निर्देशन) पोषण एवं खाद्य तेल में आत्मिनर्भरता हेतु समर्पित: भारतीय सोयाबीन अनुसन्धान संस्थान दिनांक 10 दिसम्बर 2023 को संस्थान के 37वें स्थापना दिवस समारोह के अवसर पर कृषि वैज्ञानिक चयन मंडल के अध्यक्ष डॉ संजय कुमार द्वारा विमोचन।

आमंत्रित वार्ता

- डॉ. जी.के. सतपुते ने 18-23 जून, 2023 ऑस्ट्रिया में विश्व सोयाबीन अनुसंधान सम्मेलन में भाग लिया और सोयाबीन में सूखे और पानी की लॉगिंग सिहष्णुता और रूट विशेषता वास्तुकला से जुड़े जीडब्ल्यूएएस विश्लेषण से पता चलता है।
- डॉ. मिलिंद रत्नापरखे ने 17-21 जनवरी, 2023 के दौरान वनस्पित तिलहन (आईसीवीओ-23), हैदराबाद पर अंतर्राष्ट्रीय सम्मेलन में भाग लिया और सोयाबीन में अजैविक तनाव सिहष्णुता के लिए जीनोमिक रणनीतियों पर बात प्रस्तुत की।
- 3. डॉ. सविता कोल्हे ने 15-17 दिसंबर, 2022 के दौरान आईसीएआर-सेंट्रल ट्यूबर क्रॉप्स रिसर्च इंस्टिट्यूट, तिरुवनंतपुरम में आयोजित भारतीय खेतों को बदलने के लिए कृषि संसाधनों के स्मार्टिफ-स्मार्ट प्रबंधन पर राष्ट्रीय कार्यशाला में एफएमएस-ए रिमोट क्रॉप मॉनिटरिंग सिस्टम को आमंत्रित किया।
- 4. शर्मा एमपी, भारती ए, चौरसिया डी, अग्निहोत्री आर, माहेश्वरी एचएस और ए रमेश (2023)। सोयाबीन उत्पादन और मृदा कार्बन पृथक्करण में सुधार के लिए माइक्रोबियल सिम्बायोंट की खोज। वनस्पति तेलों में अंतर्राष्ट्रीय सम्मेलन (आईसीवीओ 2023): 17-21 जनवरी, 2023 से आईसीएआर-भारतीय तिलहन अनुसंधान संस्थान, हैदराबाद द्वारा आयोजित अनुसंधान, व्यापार, मूल्य श्रृंखला और नीति।
- 5. शर्मा एमपी (2023) सोयाबीन उत्पादन में बायोफर्टिलाइजर एप्लिकेशन, सीओ 2 मिटिगेशन और कृषि क्षेत्र में व्यावसायिक अवसर। "उद्योग 5.0 और प्रतिमान शिफ्ट: एसटी के सहयोग से उभरती हुई चुनौतियां" पर

आयोजित बहु-विषयक अंतर्राष्ट्रीय कांग्रेस संमंत्रण के दौरान प्रस्तुत। क्लाउड स्टेट यूनिवर्सिटी, मिनेसोटा, यूएसए श्री वैष्णव

विद्यापेठ विश्वविद्यालय, इंदौर में 1-3, फरवरी, 2023 से।

6. शर्मा सांसद (2023)। टिकाऊ सोयाबीन उत्पादन के लिए माइक्रोबियल सिम्बियंट का बहिष्करण। आईसीएआर-रेपसीड-सरसों अनुसंधान निदेशालय, भरतपुर (मानगे, हैदराबाद द्वारा प्रायोजित) द्वारा 5-8 दिसंबर, 2023 से आयोजित वनस्पति तेल क्षेत्र के लिए तकनीकी हस्तक्षेप पर एक वेब-शॉप के दौरान प्रस्तुतिकरण।

पेटेंट प्रकाशित

साधारणतया पेटेंट

- डॉ. सिवता कोल्हे: प्रीसाइज एग्रीकल्चर के लिए लंबे वायरलेस सेंसर नेटवर्क पर इंवेंशन-इंटीग्रेटिंग मशीन लिर्निंग टेक्निक का टाइटल। पेटेंट आवेदन सं। 202341012834ए। प्रकाशन की तिथि 17/03/2023। पेटेंट कार्यालय जर्नल नंबर 11/2023 दिनांक 17/03/2023 (छठा लेखक)
- 2. डॉ. सविता कोल्हे: कृषि क्षेत्र में मशीन लर्निंग एप्रोच का उपयोग करते हुए आईओटी आधारित ह्यूमिडिटी मॉनिटरिंग सिस्टम का शीर्षक, पेटेंट आवेदन संख्या 202341001498 ए, प्रकाशन की तारीख 13/01/2023।

पुरस्कार/समकक्ष मान्यताएं/विशेषज्ञ पैनल/जर्नल संपादकीय बोर्ड के सदस्य

- 1) शिवाकुमार, एम., कुमावत, जी., नटराज, वी.,गिल, बी.एस., मदार, आर. और गुप्ता, एस (2023), अनाज उत्पादन के लिए आनुवंशिक वृद्धि के लिए सर्वश्रेष्ठ मौखिक प्रस्तुति पुरस्कार और ग्लाइसिन सोजा से आत्मिनरीक्षण के माध्यम से मुंगबीन पीला मोज़ेक इंडिया वायरस (एमवाईएमआईवी) प्रतिरोध। आईसीवीओ 2023 में, 17-21, जनवरी 2023 के दौरान हैदराबाद
- 2) चंद्रा, एस., कुमावत, जी., सैटपुटे, जीके, भाटिया, वीएस, एट अल। (2023) आईसीवीओ 2023, हैदराबाद में 17-21 जनवरी 2023 के दौरान प्रजनन चरणों के दौरान उच्च तापमान सहिष्णुता के लिए

सोयाबीन जीनोटाइप के मूल्यांकन के लिए बेस्ट पोस्टर प्रस्तुति पुरस्कार।

- 3) डॉ. एम. शिवकुमार, आईसीएआर-भारतीय सोयाबीन अनुसंधान संस्थान, इंदौर द्वारा वर्ष 2022-2023 के लिए सर्वश्रेष्ठ वैज्ञानिक पुरस्कार
- 4) 8-20 जनवरी 2023 के दौरान उज्जैन में आयोजित शाइनिंग मध्य प्रदेश कार्यक्रम के दौरान संस्थान के प्रदर्शनी स्टाल को दूसरा पुरस्कार मिला।
- 5) आईसीवीओ 2023 के अवसर पर 17-21 जनवरी के दौरान आईसीएआर-आईआईओआर, हैदराबाद द्वारा आयोजित कृषि प्रदर्शनी के दौरान संस्थान प्रदर्शनी स्टॉल को दूसरा पुरस्कार भी प्राप्त हुआ
- 6) संस्थान द्वारा नामित दो प्रगतिशील किसानों श्री मेहरबन सिंह चौधरी और श्री विजयेंद्र चौहान को 17-21 जनवरी, 2023 के दौरान हैदराबाद में आयोजित वनस्पति तेल पर अंतर्राष्ट्रीय सम्मेलन के दौरान सम्मानित किया गया है
- 7) डॉ. बी.यू. डुपारे को इंडियन जर्नल ऑफ एक्सटेंशन एजुकेशन में 2022 के दौरान प्रकाशित अपने शोध पत्र के लिए आईसीवीओ 2023 के दौरान सर्वश्रेष्ठ शोध पत्र पुरस्कार प्राप्त हुआ।
- 8) कॉपीराइट, आईटीएमयू, आईसीएआर-आईआईएसआर, इंदौर प्राप्त करने में किए गए उत्कृष्ट योगदान के लिए 26 अप्रैल 2023 को विश्व बौद्धिक संपदा दिवस पर सम्मान के लिए प्रशंसा पत्र।
- 9) डॉ. जी.के. सातपुते, प्रधान वैज्ञानिक, को डब्ल्यूएसआरसी11, 18-23 जून 2023, वियना, ऑस्ट्रिया में भाग लेने के लिए अंतर्राष्ट्रीय यात्रा सहायता (आईटीएस) के रूप में डीएसटी-एसईआरबी द्वारा अंतर्राष्ट्रीय यात्रा अनुदान से सम्मानित किया गया था।
- 10) डॉ. जीके सतपुते को स्वर्गीय डॉ. फिलिप वर्गीस, रीटेड की ओर से डब्ल्यूएसआरसी11, वियना में

- लाइफ टाइम अचीवमेंट पुरस्कार प्राप्त हुआ। प्रधान वैज्ञानिक, एआईसीआरपीएस, एआरआई पुणे।
- 11) डॉ. एम. पी. शर्मा: फिबल, फ्रिक, स्विट्जरलैंड द्वारा बायो रे इंडिया, कसरावद, खरगोन, मध्य प्रदेश, भारत (नवंबर 2020 के बाद) में आयोजित दीर्घकालिक कृषि प्रणाली तुलना (एसवाईएससीओएम) परियोजना का राष्ट्रीय वैज्ञानिक सलाहकार बोर्ड।
- 12) डॉ. गिरिराज कुमावत, ब्रासिका-फेज ॥ के आनुवंशिक हेरफेर पर परियोजना डीबीटी- यूडीएससी साझेदारी केंद्र की समीक्षा के लिए विशेष समिति के सदस्य।
- 13) डॉ. एम. पी. शर्मा: फसल वृद्धि के लिए एएम फंगी की भूमिका पर गेस्ट एडिटर, कृषि-एमडीपीआई जर्नल।
- 14) डॉ. एमबी रत्नापारखे: सदस्य सलाहकार बोर्ड, विश्व सोयाबीन अनुसंधान सम्मेलन, 18-23 जून, 2023, ऑस्ट्रिया।
- 15) डॉ. एमबी रत्नापरखे, बीएमसी जेनोमिक्स में संपादकीय बोर्ड सदस्य, जेनेटिक्स में फ्रंटियर और सोयाबीन रिसर्च।
- 16) डॉ. एम. पी. शर्मा: माइक्रोबायोलॉजी में फ्रंटियर्स में एसोसिएट एडिटर: सेक्शन माइक्रोबियल सिम्बायोसिस (सेप्ट 2021 के बाद)
- 17) डॉ. एम. पी. शर्मा: एसोसिएट एडिटर, यूरोपियन जर्नल ऑफ सोइल साइंस (नवंबर 2021 के बाद)
- 18) डॉ. एम. पी. शर्मा: कृषि विज्ञान में फ्रंटियर्स में अतिथि संपादक: कृषि-पारिस्थितिक तंत्र में फसल और मृदा प्रबंधन प्रथाओं के माध्यम से मूल एएम फंगी माइक्रोबायोम के प्रबंधन पर एक विशेष खंड के लिए मृदा-पौधे की बातचीत (अन्य सह-संपादक स्पेन, चीन, स्विट्जरलैंड, भारत से हैं)।
- 19) डॉ. जी.के. सैटपुटे, प्लांट साइंस- प्लांट अजैविक तनाव में फ्रंटियर्स के संपादक की समीक्षा करें

डॉ. शिवकुमार एम. को सर्वश्रेष्ठ मौखिक प्रस्तुति पुरस्कार आईसीवीओ 2023, हैदराबाद में 17-21 जनवरी, 2023 के दौरान

विश्व सोयाबीन अनुसंधान सम्मेलन 11 (डब्ल्यूएसआरसी11) 18-23, जून 2023, वियना, ऑस्ट्रिया के दौरान जारी रखने वाली समिति: डॉ. जी.के. सातपुते को रेजियोन III - मध्य एशिया के लिए जारी करने वाली समिति के सदस्य के रूप में चुना गया था

9. लिंकेज और सहयोग

सोयाबीन अनुसंधान और विकास और विस्तार गतिविधियों के लिए निम्नलिखित अंतर्राष्ट्रीय, राष्ट्रीय और क्षेत्रीय संस्थानों/संगठनों के साथ प्रभावी संबंध और सहयोग किए गए:

अंतरराष्ट्रीय

एशियाई वनस्पति अनुसंधान और विकास केंद्र, ताइवान जापान

इंटरनेशनल रिसर्च सेंटर फॉर एग्रीकल्चरल साइंसेज, त्सुकुबा, जापान

सेमी-एरिड ट्रॉपिक्स, हैदराबाद के लिए अंतर्राष्ट्रीय फसल अनुसंधान संस्थान

बोरलॉग इंस्टीट्यूट फॉर साउथ एशिया (बीआईएसए), जबलपुर, भारत

शुष्क क्षेत्र, अमलाहा, भारत में कृषि अनुसंधान के लिए अंतर्राष्ट्रीय केंद्र

राष्ट्रीय

मध्य प्रदेश, छत्तीसगढ़, महाराष्ट्र, हिमाचल प्रदेश, उत्तर प्रदेश, उत्तराखंड, राजस्थान, पंजाब, हरियाणा, झारखंड, तिमलनाडु, कर्नाटक, आंध्र प्रदेश, पश्चिम बंगाल, पूर्वोत्तर राज्यों में एसएयू।

आईसीएआर-नेशनल ब्यूरो ऑफ प्लांट जेनेटिक रिसोर्स, नई दिल्ली।

भारतीय कृषि अनुसंधान परिषद-केन्द्रीय कृषि अनुसंधान संस्थान, हैदराबाद|

आईसीएआर-इंडियन इंस्टीट्यूट ऑफ पल्सेस रिसर्च, कानपुर।

आईसीएआर-केन्द्रीय कृषि अभियांत्रिकी संस्थान, भोपाल

पादप जैव प्रौद्योगिकी के लिए आईसीएआर-राष्ट्रीय अनुसंधान केंद्र, नई दिल्ली आईसीएआर-भारतीय तिलहन अनुसंधान संस्थान, हैदराबाद

आईसीएआर-भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली और आरएस, इंदौर आईसीएआर-भारतीय बागवानी अनुसंधान संस्थान, बैंगलोर

आईसीएआर-राष्ट्रीय कृषि अनुसंधान प्रबंधन अकादमी, हैदराबाद

आईसीएआर-राष्ट्रीय मृदा सर्वेक्षण और भूमि उपयोग योजना ब्यूरो, नागपुर

आईसीएआर-नेशनल इंस्टीट्यूट ऑफ एबायोटिक स्ट्रेस मैनेजमेंट, बारामती, महाराष्ट्

आईसीएआर-ग्रूंडनट रिसर्च, जूनागढ़, गुजरात निदेशालय

राष्ट्रीय कृषि और ग्रामीण विकास बैंक

नेशनल फर्टिलाइजर लिमिटेड

अघरकर अनुसंधान संस्थान, पुणे

भारतीय प्रौद्योगिकी संस्थान, इंदौर

क्षेत्रीय

मध्य प्रदेश, छत्तीसगढ़, महाराष्ट्र, हिमाचल प्रदेश, उत्तर प्रदेश, उत्तराखंड, राजस्थान, पंजाब, हरियाणा, झारखंड, तमिलनाडु, कर्नाटक, आंध्र प्रदेश, पश्चिम बंगाल, पूर्वोत्तर राज्यों के कृषि विभाग

गैर सरकारी संगठन जैसे एसओपीए, ओआईएलएफईडी

संबंधित राज्यों के राज्य सहकारी विकास बैंक।

राज्य बीज निगम

बीज प्रमाणन विभाग

10 राजभाषा कार्यान्वयन

संस्थान में 2023 के दौरान राजभाषा कार्यान्वयन सम्बन्धी विभिन्न गतिविधियाँ

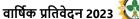
भारतीय संविधान में हिन्दी को संघ की राजभाषा के रूप में स्थापित किया गया है एवं संविधान के भाग सत्रह, अनुच्छेद तीन सौ इक्यावन में वर्णित है की राजभाषा हिन्दी को इस तरह से विकसित किया जाय ताकि वह भारत की विविध संस्कृति को व्यक्त करने में समर्थवान हो | अतः राजभाषा के रूप में हिन्दी की भूमिका अत्यंत महत्वपूर्ण तथा दायित्व युक्त है। इस उद्देश्य का वहन करते हुये भा.कृ .अनु .प .भारतीय सोयाबीन अनुसन्धान संस्थान, इंदौर में राजभाषा हिन्दी के प्रचार-प्रसार हेतु अनेकानेक कार्यक्रम किये जा रहे है। जो राजभाषा के प्रगामी प्रयोग में अत्यंत सार्थक सिद्ध हो रहे है। इस क्षेत्र में किये जा रहे क्रिया कलापों का संक्षिप्त विवरण निम्नवत है:

राजभाषा नियम १९७६ के नियम का अनुपालन : संस्थान के अधिकारी एवं कर्मचारी शासकीय कार्यों हेतु राजभाषा नियम १९७६ के उपनियम)1) तथा)4) के

अनुसार लिखे जाने वाली टिप्पणियों एवं अन्य कार्य हिन्दी में करते हैं।

राजभाषा कार्यान्वयन समिति की तिमाही बैठक:

प्रथम बैठक: 07 अप्रैल, 2023 द्वितीय बैठक: 06 जुलाई, 2023 तृतीय बैठक : 11 अक्टूबर, 2023


हिन्दी कार्यशालाएं :संस्थान के अधिकारीयों एवं कर्मचारियों की हिन्दी में कार्य करने के दौरान होने वाली समस्यायों के निराकरण हेतु संस्थान में हिन्दी कार्यशालाओं का आयोजन किया जाता है। इसके अतिरिक्त कार्यशालाओं के आयोजन का मुख्य ध्येय यह भी होता है कि हिन्दी का प्रयोग किस प्रकार सरल से सरलतम की ओर बढाया जा सकता है। इस उद्देश्य हेतु सम्बंधित विषयानुसार कार्यशालाएं संपन्न की जाती हैं। 2023 में अब तक 04 कार्यशालाओं का आयोजन किया गया .जिसकी सूची इस प्रकार से है :

दिनांक	विषय	अतिथि वक्ता
२१ अप्रैल, २०२३	"विश्व पटल पर हिंदी का प्रयोग एवं स्वीकार्यता"	श्री राजेश श्रीवास्तव
		भारतीय प्रबंधन संस्थान इंदौर
31 अगस्त, 2023	हिंदी के द्वारा ही पुरे भारत को एक सूत्र में	श्री संतोष मोहंती
	पिरोया जा सकता है	सेवा निवृत प्रबंधक बैंक ऑफ़ बड़ोदा
		एवं साहित्कार, इंदौर
14 सितम्बर, 2023	राजभाषा नीतियों का क्रियान्वयन	डॉ लक्ष्मण शिंदे,
		विभागाध्यक्ष शिक्षा,
		अध्ययन शाळा देवी अहिल्या
		विश्वविद्यालय, इंदौर
04 दिसम्बर, 2023	हिंदी भाषा के विकास में आगे क्या पहल होनी	डॉ.श्याम सुन्दर पलोड़,
	चाहिए	विभागाध्यक्ष एवं प्रशासक, संस्कार
		कॉलेज ऑफ़ प्रोफेशनल स्टडीज धर
		रोड, इंदौर

प्रशिक्षण: संस्थान में राजभाषा के प्रचार-प्रसार हेतु कृषकों एवं प्रशिक्षणार्थियों को प्रशिक्षण सम्बन्धित सारी सामग्रियां हिन्दी में प्रदान की जा रही है।

राजभाषा अधिनियम, १९६३ की धारा3(3): संस्थान में राजभाषा अधिनियम, १९६३ की धारा (3) से सम्बंधित दस्तावेजों जैसे सामान्य आदेश अधिसूचनाएं प्रेस विज्ञप्ति, संविदा, लाइसेंस परिमट टेंडर के फार्म और नोटिस संकल्प नियम इत्यादि को)हिन्दी और अंग्रेजी (द्विभाषी रूप में निकला जाता है, ताकि राजभाषा सम्बंधित दिशा-निर्देशों का पालन सतत होता रहे।

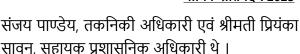
यूनिकोड की सुविधा :संस्थान के अधिकारियों तथा कर्मचारी की हिन्दी में कार्य करने की रूचि में वृद्धि करने हेतु समस्त कम्पुटर में हिन्दी यूनिकोड की व्यवस्था प्रदान की गई है जिससे एक सामान फॉण्ट के माध्यम से पूरा संस्थान एक ही दिशा की ओर अग्रसित हो सके।

परिषद् मुख्यालय राजभाषा समिति का निरिक्षण:

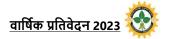
राजभाषा समिति ने भारतीय सोयाबीन अनुसंधान संस्थान में हो रहे हिंदी में कार्यों का निरिक्षण दिनांक 27.04.2023को किया । इस दौरान समिति ने विभाग के वरिष्ठ अधिकारीयों की उपस्थिति में हिंदी के कार्यों का अवलोकन किया। इस निरिक्षण बैठक में संस्थान की ओर से प्रभारी राजभाषा एवं श्री प्रधान वैज्ञानिक डॉ. पुनम कुचलान, प्रशासनिक अधिकारी श्री सौरभ मीना, श्री अजय श्रीवास्तव कुमार, रवि शंकर एवं आई. आर. खान ने भाग लिया।

राजभाषा पत्रिका सोयवृतिका के चतुर्थ अंक बीज विशेषांक का प्रकाशन :भारतीय सोयाबीन अनुसंधान संस्थान प्रति वर्ष कृषि एवं अन्य विषयों से सम्बंधित आलेख राजभाषा पत्रिका सोयवृतिका में प्रकाशित करता है। वर्ष 2023सोयवृतिका के चतुर्थ अंक बीज विशेषांक के द्वितीय संस्करण में विभिन्न फसलों जैसे गेंहू चना, मटर सरसों, अलसीकुसुम एवं श्री अन्न आदि के बींज उत्पादन की वैज्ञानिक तकनिकी से सम्बंधित आलेख प्रस्तुत किये गए।

राजभाषा पत्रिका सोयवृतिका के चतुर्थ अंक बीज विशेषांक का प्रकाशन


संयुक्त क्षेत्रीय राजभाषा सम्मलेन में संस्थान को राजभाषा में उत्तम कार्य करने हेतु भारत सरकार के गृह मंत्रालय के राजभाषा विभाग द्वारा प्रथम पुरस्कार प्रदान किया गया

हिन्दी पखवाड़ा


भा.कृ.अनु.प .भारतीय सोयाबीन अनुसंधान संस्थान, इन्दौर में हिन्दी पखवाड़ा का आयोजन दिनांक 29-14 सितंबर, 2023 में किया गया | हिंदी पखवाडा कार्यक्रम का उद्घाटन संस्थान के निदेशक महोदय डॉ. कुँवर हरेन्द्र सिंह ने किया | समारोह में विशिष्ठ अतिथि के रूप में डॉ. लक्ष्मण शिंदे, विभागाध्यक्ष, शिक्षा अध्ययनशाळा, देवी अहिल्या विश्व विद्यालय इंदौर को आमंत्रित किया गया | हिन्दी पखवाड़ा के माध्यम से यह प्रयास रहा है कि संस्थान के वैज्ञानिकों, अधिकारियों एवं कर्मचारियों की रूचि हिन्दी में काम करने के प्रति निरंतर बढ़ती रहे तथा राजभाषा हिन्दी का प्रगामी विकास और प्रचारप्रसार निरंतर होता रहे। हिन्दी पखवाड़ा के दौरान विभिन्न प्रतियोगिता का आयोजन किया गया, जो निम्नवत है:-

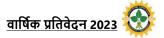
- दिनांक 15 सितंबर, 2023 को संस्थान के कुशल सहायक ग्रेड के कर्मचारियों हेतु हिन्दी में श्रुतिलेखन-प्रतियोगिता' का आयोजन किया गया, जिसके निर्णायक श्री संजय पाण्डेय एवं श्री आई आर. खान ने किया।
- दिनांक 18 सितंबर, 2023 को संस्थान के समस्त कार्मिकों हेतु प्रोत्साहन योजना के आवेदन का मूल्यांकन किया गया, जिसके निर्णायक समिति के सदस्य डॉ. महावीर शर्मा. डॉ. बी.यू. दुपारे डॉ.ज्ञानेश सातपुते डॉ. पुनम कुचलान, सौरभ मीणा थे।
- दिनांक 20 सितंबर, 2023 को मौलिक हिंदी स्लोगन प्रतियोगिता (विषय: "श्रीअन्न") का आयोजन किया गया इस प्रतियोगिता के निर्णायक डॉ. संजय गुप्ता एवं श्याम किशोर वर्मा थे।
- दिनांक 21 सितंबर, 2023 को संस्थान के समस्त कर्मचारियों के लिए टिप्पण लेखन प्रतियोगिता का आयोजन किया गया। इस प्रतियोगिता के निर्णायक श्री

- दिनांक 22 सितम्बर, 2023 को संस्थान के समस्त कर्मचारियों के लिए हिन्दी में निबंध लेखन प्रतियोगिता विषय: "हिन्दी - पारंपरिक ज्ञान से कृत्रिम बुद्धिमत्ता तक" का आयोजन किया गया । इस प्रतियोगिता के निर्णायक डॉ. विनीत कुमार एवं डॉ. सविता कोल्हे, प्रधान वैज्ञानिक थे ।
- दिनांक 25 सितम्बर, 2023 को संस्थान के समस्त कर्मचारियों हेतु प्रस्तुतीकरण कुशलता सोयाबीन के व्यंजन विधि के विषय पर प्रस्तुतीकरण प्रतियोगिता का आयोजन किया गया इस प्रतियोगिता के निर्णायक एवं डॉ. सविता कोल्हे, प्रधान वैज्ञानिक एवं डॉ. पुनम कुचलान, प्रधान वैज्ञानिक थे।
- दिनांक 27 सितम्बर, 2023 को संस्थान के समस्त कर्मचारियों हेतु प्रश्न मंच- प्रतियोगिता का आयोजन किया गया। समस्त प्रतियोगिताओं में कर्मचारियों ने बढ़-चढ़कर अपनी सहभागिता का प्रदर्शन किया तथा प्रतियोगिता के माध्यम से अधिकारियों एवं कर्मचारियों में हिन्दी के प्रति और अधिक कार्य करने का उत्साह और प्रेरणा जागृत हुई, इस प्रतियोगिता का संचालन डॉ पुनम कुचलान प्रधान, वैज्ञानिक एवं प्रभारी अधिकारी राजभाषा ने किया।
- दिनांक 29 सितम्बर, 2023 को हिंदी पखवाड़ा कार्यक्रम का समापन एवं पुरस्कार वितरण समारोह संपन्न हुआ, जिसमे सभी पात्र प्रतिभागियों को पुरस्कार देकर सम्मानित किया गया तथा इस कार्यक्रम के सफल संचालन एवं समापन पर संस्थान के निदेशक डॉ. कुँवर हरेन्द्र सिंह द्वारा सभी प्रतिभागियों को बधाई एवं शुभकामनाओं के साथ हिंदी में अधिक से अधिक कार्य करने का अनुरोध किया गया । पुरस्कार वितरण एवं समापन समारोह कार्यक्रम का संचालन श्री श्याम किशोर वर्मा द्वारा किया गया ।

हिंदी पखवाडा की झलक 2023

संस्थान के निदेशक डॉ कुँवर हरेन्द्र सिंह की अध्यक्षता में हिन्दी पखवाड़ा 2023 कार्यक्रम का शुभारंभ

विशिष्ट अतिथि डॉ. लक्षमण शिंदे, प्रोफ़ेसर संस्थान के अधिकारियों एवं कर्मचारियों को संबोधित करते हुए



हिंदी पखवाड़ा – 2023 का पुरस्कार वितरण एवं समापन समारोह कार्यक्रम में निदेशक महोदय विजेताओं को पुरस्कार देते हुए |

11. महत्वपूर्ण समितियाँ

संस्थान प्रबंधन समिति

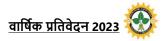
नियम	नाम	पद का नाम		
66(a)1	निदेशक, आईसीएआर-आईआईएसआर, इंदौर	अध्यक्ष		
66(a)2	श्री एम. सेल्वेंद्रन, आयुक्त और निदेशक, कृषि विभाग, भोपाल (एम.पी.)			
66(a)3	श्री भीमा राम आयुक्त और निदेशक, कृषि आयुक्त, जयपुर का कार्यालय			
66(a)4	कुलपति, निदेशक विस्तार सेवाएं आरवीएसकेवीवी, ग्वालियर (मध्य प्रदेश) मनोनीत डॉ. वाई.पी. सिंह, निदेशक विस्तार सेवाएं			
66(a)5	श्री। राजकुमार पटेल, विलेज सुअटलाई, जबलपुर (मध्य प्रदेश) श्री चन्बासप्पा (आजीत), बाबूराव नदगादल्ली, कोल्हापुर, महाराष्ट्र।	सदस्य		
66(a)6	डॉ ओपी प्रेमी, प्रधान वैज्ञानिक, आईसीएआर-आईआईएसडब्ल्यूसीआर, चंडीगढ़	सदस्य		
	डॉ. नवीन सिंह, प्रिंसिपल साइंटिस्ट, डिविजन ऑफ जेनेटिक्स, आईसीएआर-आईएआरआई, नई दिल्ली	सदस्य		
	डॉ. एस. के. झा, प्रधान वैज्ञानिक (तिलहन और दलहन), फसल विज्ञान प्रभाग, आईसीएआर, कृषि भवन, नई दिल्ली	सदस्य		
	डॉ. यशवीर सिंह शिवाय, प्रधान वैज्ञानिक, कृषि विज्ञान कृषि विज्ञान प्रभाग, आईसीएआर-आईएआरआई, नई दिल्ली।	सदस्य		
	डॉ. के. सी. शर्मा, प्रधान वैज्ञानिक, आईसीएआर-आईएआरआई क्षेत्रीय स्टेशन नई दिल्ली।	सदस्य		
66(a)7	सहायक महानिदेशक (तिलहन एवं दलहन) कृषि भवन, आईसीएआर, नई दिल्ली	सदस्य		
66(a)8	श्री एमके मुलानी, विरष्ठ वित्त और लेखा अधिकारी, आईसीएआर-आईआईएसएस, नबीबाग, बेरसिया रोड, भोपाल (मध्य प्रदेश)	सदस्य		
66(a)9	वरिष्ठ प्रशासनिक अधिकारी, आईसीएआर-आईआईएसआर, इंदौर	सदस्य- सचिव		

अनुसंधान सलाहकार समिति (07 .06.2020 सं 06.06.2023)

अध्यक्ष	डॉ एस.के. शर्मा, पूर्व कुलपति सीएसके एच.पी. कृषि विश्वविद्यालय शांति कुंज, घुगर टांडा, पालमपुर-176062
सदस्य	डॉ. टी.के. अध्या, पूर्व निदेशक, आईसीएआर-एनआरआरआई, कटक और प्रोफेसर, स्कूल ऑफ बायोटेक्नोलॉजी, केआईआईटी विश्वविद्यालय, भुवनेश्वर) भुवनेश्वर (ओडिशा) 751 009
सदस्य	डॉ. के.आर. कोंडल, फोर्मर जेटी। निदेशक (अनुसंधान), आईसीएआर-आईएआरआई और निदेशक, आईसीएआर-एनआईपीबी, नई दिल्ली
सदस्य	डॉ। पीजी कर्माकर, पूर्व निदेशक, आईसीएआर-सीआरआईजेएएफ, बैरकपो रे, कोलकाता पश्चिम बंगाल-743136
सदस्य	डॉ. रेखा एस. सिंघल, खाद्य प्रौद्योगिकी के प्रोफेसर, फार्मर हेड, खाद्य इंजीनियरिंग मुंबई - 400 019
सदस्य	डॉ. के.एच. सिंह, निदेशक, आईसीएआर-भारतीय सोयाबीन अनुसंधान संस्थान, खंडवा रोड इंदौर 452001 (मध्य प्रदेश)
सदस्य	डॉ. संजीव गुप्ता, एडीजी। (तिलहन बीज एवं दलहन), आईसीएआर, कृषि भवन, नई दिल्ली-110001
सदस्य	श्री बंसीलाल गुर्जर, ग्राम लाल घाटी, पोस्ट सबखाडा, जिला मंदसौर (मध्य प्रदेश)
सदस्य सचिव	डॉ. एम.पी. शर्मा, प्रधान वैज्ञानिक (माइक्रोबायोलॉजी) आईसीएआर-भारतीय सोयाबीन अनुसंधान संस्थान, खंडवा रोड, इंदौर-452001

अनुसंधान सलाहकार समिति (07.06.2023)

अध्यक्ष	डॉ एस.के. दत्ता, पूर्व डीडीजी (सीएस), आईसीएआर और पूर्व वीसी, विश्व-भारती, विश्वविद्यालय, शांतिनिकेतन, पश्चिम बंगाल
सदस्य	डॉ एस.आर. भट, सेवानिवृत्त प्रिंसिपल साइंटिस्ट और प्रोफेसर, आईसीएआर-राष्ट्रीय पादप जैव प्रौद्योगिकी संस्थान, नई दिल्ली
सदस्य	डॉ. मसूद अली, पूर्व निदेशक इंडियन इंस्टीट्यूट ऑफ पल्स रिसर्च (आईसीएआर-आईआईपीआर), कानपुर, उत्तर प्रदेश
सदस्य	डॉ वी.के. बरनवाल, राष्ट्रीय प्रोफ़ेसर (वायरोलॉजी), पादप पैथोलॉजी, आईएआरएल, नई दिल्ली का प्रभाग
सदस्य	डॉ. आशुतोष उपाध्याय, प्रोफ़ेसर, खाद्य विज्ञान और प्रौद्योगिकी विभाग, एनआईएफटीएम एलएनडीयूस्ट्रियल एस्टेट, कुंडली, सोनीपत, हरियाणा
सदस्य	डॉ. के.एच. सिंह, निदेशक, आईसीएआर-भारतीय सोयाबीन अनुसंधान संस्थान, इंदौर ४५२००१ (मध्य प्रदेश)
सदस्य	डॉ. संजीव गुप्ता, एडीजी। (तिलहन बीज और दलहन), आईसीएआर, कृषि भवन, नई दिल्ली
सदस्य सचिव	डा. मिलिंद रत्नापरखे प्रधान वैज्ञानिक (माइक्रोबायोलॉजी) आईसीएआर-भारतीय सोयाबीन अनुसंधान संस्थान, खंडवा रोड, इंदौर


संस्थान की अन्य समितियां

1	1 11-20 URI	2.	المستوالية والمتارية
3.	राजभाषा कार्यान्वयन समिति पदेन निदेशक, आईसीएआर-आईआईएसआर (अध्यक्ष) डॉ. पूनम कुचलान डॉ एस.के. पांडे डॉ. डी.एन. बारास्कर श्री रवि शंकर कुमार विरष्ठ प्रशासनिक अधिकारी विरष्ठ वित्त एवं लेखा अधिकारी प्राथमिकता सेटिंग निगरानी और मूल्यांकन (पीएमई)	4.	संस्थान प्रौद्योगिकी प्रबंधन समिति (आईटीएमसी) निदेशक, आईसीएआर-आईआईएसआर (अध्यक्ष) डॉ. के. सी. शर्मा, आईएआरआई आरएस, इंदौर डॉ. अनीता रानी डॉ. मिलिंद रत्नापर्ख डॉ. एमके कुचलान डॉ. पूनम कुचलान, आई / सी पीएमई डॉ. एमपी शर्मा, सदस्य सचिव (आई/सी आईटीएमयू)
J.	सेल डॉ. पूनम कुचलान (अध्यक्ष) डॉ. शिवकुमार एम. डॉ. राघवेन्द्र नर्गुंद डॉ. गिरिराज कुमावत (सदस्य सचिव)		डॉ. सविता कोल्हे (अध्यक्ष) डॉ ए रमेश डॉ. जी. के. सातपुते डॉ. राकेश कुमार वर्मा डॉ. वी. नटराज विरष्ठ प्रशासनिक अधिकारी विरष्ठ वित्त एवं लेखा अधिकारी
5.	मानव संसाधन विकास समिति डॉ. मिलिंद रतापर्खे (अध्यक्ष) डॉ शिवकुमार एम। डॉ. गिरिराज कुमावत डॉ. एस. के. पांडे सुश्री अविनाश कलंके वरिष्ठ प्रशासनिक अधिकारी	6.	कंसल्टेंसी प्रोसेसिंग सेल (सीपीसी) डॉ. एमपी शर्मा (अध्यक्ष) डॉ. मृणाल कुचलान डॉ. लोकेश मीणा डॉ. राघवेन्द्र मदर विरेष्ठ प्रशासनिक अधिकारी विरेष्ठ वित्त एवं लेखा अधिकारी
7.	छात्र कार्य समिति और उच्च अध्ययन समिति डॉ. संजय गुप्ता (अध्यक्ष) डॉ. वंगाला राजेश श्रीमती ज्योति मीना	8.	प्रौद्योगिकी हस्तांतरण और विस्तार गतिविधि सिमित डॉ. बी.यू. दुपारे (अध्यक्ष) डॉ. एम.पी. शर्मा नोडल अधिकारी एमजीएमजी नोडल अधिकारी नेह डीआर. लोकेश मीणा (नोडल ऑफिसर टीएसपी) डॉ. राकेश कुमार वर्मा (नोडल ऑफिसर एससीएसपी) वरिष्ठ प्रशासनिक अधिकारी वरिष्ठ वित्त एवं लेखा अधिकारी
9.	एस्टेट और गेस्ट हाउस प्रबंधन समिति श्री एस.पी. सिंह श्री आर.एन. श्रीवास्तव श्री आरसी शाक्य श्री ओ.पी.विश्वकर्मा सुश्री ज्योति मीना सुश्री सीमा चौहान वरिष्ठ प्रशासनिक अधिकारी	10.	प्रकाशन समिति (वार्षिक रिपोर्ट) डॉ. गिरिराज कुमावत (अध्यक्ष) डॉ. ए. रमेश डॉ. वी नटराज डॉ. वंगाला राजेश डॉ. राघवेंद्र नागुँद डॉ. संजीव कुमार

11.	पुस्तकालय सलाहकार समिति डॉ. अनीता रानी (अध्यक्ष) श्री राम मनोहर पटेल डॉ. वी. नटराज श्री आरएन सिंह वरिष्ठ वित्त एवं लेखा अधिकारी वरिष्ठ प्रशासनिक अधिकारी	12.	विदेशी प्रतिनियुक्ति और उच्च अध्ययन समिति डॉ. मिलिंद बी. रत्नापर्खे (अध्यक्ष) डॉ. सविता कोल्हे पीएमई से प्रतिनिधि वरिष्ठ प्रशासनिक अधिकारी
13.	कार्य समिति डॉ. जी.के. सातपुते (अध्यक्ष) डॉ. राघवेन्द्र नार्गुद (सह-अध्यक्ष) डॉ. वंगला राजेश एसएच आरएन सिंह वरिष्ठ प्रशासनिक अधिकारी वरिष्ठ वित्त एवं लेखा अधिकारी ईस्टेट अधिकारी	14.	कृषि ज्ञान प्रबंधन युनिट डॉ. सविता कोल्हे (अध्यक्ष) डॉ. बी.यू. दुपारे डॉ. अविनाश कलंके
15.	यौन उत्पीड़न पर महिला शिकायत समिति डॉ. पूनम कुचलान (अध्यक्ष) सुश्री प्रियंका सावन सुश्री सीमा चौहान थर्ड पार्टी रिप्रेजेंटेटिव (आवश्यकता पड़ने पर नामित किया जाना है) प्रशासनिक अधिकारी	16.	गृह आबंटन समिति डॉ. ज्ञानेश के. सातपुते (अध्यक्ष) डॉ. गिरिराज कुमावत डॉ. राकेश कुमार वर्मा ईस्टेट अधिकारी विरष्ठ वित्त एवं लेखा अधिकारी विरष्ठ प्रशासनिक अधिकारी (सदस्य सचिव) श्रीमती प्रियंका सावन, आईजेएससी मेम्बर
17.	केंद्रीकृत सार्वजनिक शिकायत प्रकोष्ठ और निगरानी प्रणाली (सीपीजीसीएमएस) डॉ. विनीत कुमार	18.	स्टोर प्रबंधन समिति डॉ. निखलेश पंड्या श्री आईआर खान सुश्री सीमा चौहान
19.	संपर्क अधिकारी (एससी/एसटी/ओबीसी) डीआर. पूनम कुचलान (एससी/एसटी) डॉ. सविता कोहल (ओबीसी)	20.	सुरक्षा कक्ष श्री एस.पी. सिंह (अध्यक्ष) श्री ओ.पी. विश्वकर्मा श्री आर.सी. शाक्या
21.	फार्म प्रबंधन , मूल्य निर्धारण , फार्म आइटम निपटान समिति डॉ. एम. के. कुचलान (अध्यक्ष) डॉ. राकेश कुमार वर्मा एस.एच. आर. सी. शाक्या स्टोर अधिकारी विरष्ठ वित्त एवं लेखा अधिकारी विरष्ठ प्रशासनिक अधिकारी	22.	खेल और कर्मचारी कल्याण समिति डॉ शिव कुमार एम . श्री आर.एन. श्रीवास्तव श्री एस.पी. सिंह श्री आर.सी. शाक्य सुश्री सीमा चौहान श्री संजीव मिश्रा श्री बलबीर सिंह वरिष्ठ वित्त एवं लेखा अधिकारी वरिष्ठ प्रशासनिक अधिकारी
23.	स्वच्छ भारत अभियान समिति वरिष्ठ प्रशासनिक अधिकारी श्री आर.एन.श्रीवास्तव डॉ डीएन बारास्कर श्री एस.के. वर्मा श्रीमती ज्योति मीना श्री आई.आर.खान	24.	संस्थान प्रकाशन/प्रिंटिंग, प्रेस और मीडिया समिति (सामान्य) डॉ. बी.यू. दुपारे (अध्यक्ष) डॉ. सविता कोल्हे डॉ. लोकेश मीणा डॉ. डी.एन. बारास्कर श्री एस.के. वर्मा

25.	श्री अनिल क्रास्को विरष्ठ वित्त एवं लेखा अधिकारी श्री सुरला वाहन प्रबंधन समिति डॉ. जी.के. सातपुते (अध्यक्ष) डॉ. लोकेश मीणा डॉ. संजय पांडे	26.	भौतिक सत्यापन और क्षतिपूर्ति समिति डीआर. जी. के. सतपुते (अध्यक्ष) डॉ. सविता कोल्हे डॉ. राजेश वंगाला डॉ एस.के. पांडे श्री आर.एन. श्रीवास्तव श्री आई. आर. खान श्री बलबीर सिंह स्टोर अधिकारी विरष्ठ वित्त एवं लेखा अधिकारी श्री अजय कुमार श्रीवास्तव, सहायक प्रशासनिक अधिकारी (सदस्य सचिव)
27.	टेंडर समिति डॉ. एमबी रत्नापर्खे (अध्यक्ष) डॉ. प्रिंस चोयाल श्री हेमंत माहेश्वरी		

12.कार्मिक

क्रमांक	नाम	पद का नाम
	निदेशक और वैज्ञानिक कर्मचारी	
1.	डॉ. कुंवर हरेंद्र सिंह	निदेशक
2.	डॉ. नीता खांडेकर	प्रधान वैज्ञानिक (28.03.2023 तक)
3.	डॉ. संजय गुप्ता	प्रधान वैज्ञानिक
4.	डॉ. अनीता रानी	प्रधान वैज्ञानिक
5	डॉ. महावीर पी. शर्मा	प्रधान वैज्ञानिक
6.	डॉ. विनीत कुमार	प्रधान वैज्ञानिक
7.	डॉ. ए. रमेश	प्रधान वैज्ञानिक
8.	डॉ. बुद्धेश्वर यू. दुपारे	प्रधान वैज्ञानिक
9.	डॉ. सविता कोल्हे	प्रधान वैज्ञानिक
10.	डॉ. आर. रामटेक	प्रधान वैज्ञानिक(23.03.2023 तक)
11.	डॉ. मनोज के. श्रीवास्तव	प्रधान वैज्ञानिक (19.06.2023 तक)
12.	डॉ. पूनम कुचलान	प्रधान वैज्ञानिक वैज्ञानिक
13.	डॉ. एमबी रत्नापरखे	प्रधान वैज्ञानिक वैज्ञानिक
14.	डॉ. ज्ञानेश के. सतपुते	प प्रधान वैज्ञानिक वैज्ञानिक
15.	डॉ. मृणाल के. कुचलान	सीनियर वैज्ञानिक
16.	डॉ. गिरिराज कुमावत	सीनियर वैज्ञानिक
17.	डॉ. एम. शिवकुमार	सीनियर वैज्ञानिक
18.	श्री राम मनोहर पटेल	सीनियर वैज्ञानिक (अध्ययन अवकाश पर)
19.	सुश्री नेहा पांडे	साइंटिस्ट एसएस (अध्ययन अवकाश पर)
20.	डॉ. वी. नटराज	साइंटिस्ट एसएस
21.	डॉ. राजेश वंगा ला	साइंटिस्ट एसएस
22.	डॉ. राघवेंद्र मदर	साइंटिस्ट एसएस
23.	डॉ. लोकेश कुमार मीणा	साइंटिस्ट एसएस
24.	डॉ. राकेश कुमार वर्मा	साइंटिस्ट एसएस
25.	डॉ. प्रिंस चोयाल	वैज्ञानिक
26.	श्री संजीव कुमार	वैज्ञानिक
27.	श्री हेमंत माहेश्वरी	वैज्ञानिक
28.	श्री विराज कांबले	वैज्ञानिक (अध्ययन अवकाश पर)

प्रशासनिक कर्मचारी					
29.	श्री सौरभ मीणा	वरिष्ठ प्रशासनिक अधिकारी			
30.	श्री सोमनाथ मुखर्जी	वित्त लेखा अधिकारी			
31.	श्री अजय श्रीवास्तव	सहायक प्रशासनिक अधिकारी			
32.	सुश्री प्रियंका सावन	सहायक प्रशासनिक अधिकारी			
33.	श्री एसपी सिंह	निजी सचिव			
34.	श्री रवि शंकर	सहायक			
35.	श्री अविनाश कलानके	सहायक			
36.	श्री अनिल कैरास्को	सहायक			
	तकनीकी व				
37.	श्री रघुनाथ सिंह	टी-9 (सीटीओ)			
38.	डॉ. निखिलेश पंड्या	टी-9 (सीटीओ)			
39.	डॉ. वी.पी.एस. बुंदेला	टी-9 (सीटीओ)			
40.	श्री संजय के. पांडे	टी-9 (सीटीओ)			
41.	श्री रामेंद्र एन. श्रीवास्तव	टी-9 (सीटीओ) (30.09.2023 तक)			
42.	श्री देवदत्त एन. बारास्कर	टी-9 (सीटीओ) (30.04.2023 तक)			
43.	श्री श्याम के. वर्मा	टी-६ (एसीटीओ)			
44.	श्री ओम पी. विश्वकर्मा	टी-5 (टीओ)			
45.	श्री राकेश सी. शाक्य	टी-5 (टीओ)			
46.	श्री इरफानुर आर. खान	टी-5 (टीओ)			
47.	श्री फ्रांसिस दमासुस	टी-5 (टीओ)			
48.	सुश्री ज्योति मीना	टी-3 (टीए)			
49.	श्री बिलबर सिंह	ਟੀ-2			
50.	सुश्री सीमा चौहान	<u>ਟੀ</u> -1			

	कुशल सहायक कर्मचारी				
51.	श्री संजीव मिश्रा	डुप्लिकेट अधिकारी			
52.	श्री निर्भय सिंह	स्किल्ड सपोर्टिंग स्टाफ			
53.	श्री बलबीर सिंह	स्किल्ड सपोर्टिंग स्टाफ			
54.	श्री सुरला	स्किल्ड सपोर्टिंग स्टाफ			
55.	श्रीमती फुलकी बाई	स्किल्ड सपोर्टिंग स्टाफ			
56.	श्रीमती रायदाबाई	स्किल्ड सपोर्टिंग स्टाफ			
57.	श्री मंगिलाल	स्किल्ड सपोर्टिंग स्टाफ			
58.	श्रीमती कमली बाई	स्किल्ड सपोर्टिंग स्टाफ			
59.	श्री दीपक	स्किल्ड सपोर्टिंग स्टाफ			
60.	श्रीमती चुंकी बाई	स्किल्ड सपोर्टिंग स्टाफ			
61.	श्रीमती सागरी बाई	स्किल्ड सपोर्टिंग स्टाफ			
62.	श्रीमती सागर बाई	स्किल्ड सपोर्टिंग स्टाफ			
63.	श्रीमती रेखा बाई	स्किल्ड सपोर्टिंग स्टाफ			
64.	श्रीमती मीरा बाई	स्किल्ड सपोर्टिंग स्टाफ			
65.	श्रीमती पार्वती बाई	स्किल्ड सपोर्टिंग स्टाफ			
66.	श्रीमती रोमू बाई	स्किल्ड सपोर्टिंग स्टाफ			
67.	श्रीमती तेजू बाई	स्किल्ड सपोर्टिंग स्टाफ			
68.	श्रीमती सुरजा बाई	स्किल्ड सपोर्टिंग स्टाफ			
69.	श्रीमती रुमली बाई	स्किल्ड सपोर्टिंग स्टाफ			
70.	श्रीमती सरिता बाई	स्किल्ड सपोर्टिंग स्टाफ			
71.	श्रीमती संगीता बाई	स्किल्ड सपोर्टिंग स्टाफ			
72.	श्रीमती हीरा बाई	स्किल्ड सपोर्टिंग स्टाफ			
73.	श्रीमती अंतर बाई	स्किल्ड सपोर्टिंग स्टाफ			
74.	श्रीमती मंगी बाई	स्किल्ड सपोर्टिंग स्टाफ			
75.	श्रीमती नाकी बाई	स्किल्ड सपोर्टिंग स्टाफ			
76.	श्रीमती सैंटो बाई	स्किल्ड सपोर्टिंग स्टाफ			
	l	<u>'</u>			

जॉइनिंग, प्रोमोशन, ट्रांसफर, रिटायरमेंट

जॉइनिंग

श्री सोमनाथ मुखर्जी, 02.08.2023 को वित्त लेखा अधिकारी के रूप में शामिल हुए।

परिवर्तन

क्र.सं.	कर्मचारी का नाम	पोस्ट	में स्थानांतरित किया	स्थानांतरण की तिथि
			गया	
1.	डॉ. राजकुमार रामटेक	प्रधान	आईसीएआर-	23.03.2023
		वैज्ञानिक	सीआईसीआर, नागपुर	
2.	डॉ. नीता खांडेकर	प्रधान	आईसीएआर-सीआईएई,	28.03.2023
		वैज्ञानिक	भोपाल	
3.	डॉ. मनोज श्रीवास्तव	प्रधान	आईसीएआर-	19.06.2023
		वैज्ञानिक	आईआईएसआर,	
			लखनऊ	

रिटायरमेंट्स

क्र.सं.	कर्मचारी का नाम	पोस्ट	सेवानिवृत्ति की तिथि
1.	डॉ डीएन बारास्कर	सीटीओ	30.04.2023
2.	श्री रामेन्द्र नाह श्रीवास्तव	सीटीओ	30.09.2023
3.	श्री सुरला	स्किल्ड सपोर्टिंग स्टाफ	31.03.2023