Policy Paper

Diversification of Cropping System in Punjab and Haryana through Cultivation of Maize, Pulses and Oilseeds

> Sujay Rakshit N.P. Singh Nita Khandekar P.K. Rai

ICAR-Indian Institute of Maize Research, Ludhiana ICAR-Indian Institute of Pulses Research, Kanpur ICAR-Indian Institute of Soybean Research, Indore ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur

Policy Paper

Diversification of Cropping System in Punjab and Haryana through Cultivation of Maize, Pulses and Oilseeds

> Sujay Rakshit N.P. Singh Nita Khandekar P.K. Rai

ICAR-Indian Institute of Maize Research, Ludhiana ICAR-Indian Institute of Pulses Research, Kanpur ICAR-Indian Institute of Soybean Research, Indore ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur

Citation

Rakshit S., Singh N.P., Khandekar N. and Rai P.K. 2021. Diversification of Cropping System in Punjab and Haryana through Cultivation of Maize, Pulses and Oilseeds. Policy paper. ICAR-Indian Institute of Maize Research, Ludhiana. p. 37.

Authors Affiliation

Sujay Rakshit, ICAR-Indian Institute of Maize Research, Ludhiana N.P. Singh, ICAR -Indian Institute of Pulses Research, Kanpur Nita Khandekar, ICAR-Indian Institute of Soybean Research, Indore P.K. Rai, ICAR- Directorate of Rapeseed- Mustard Research, Bharatpur

Crop-wise Contribution

Maize: Sujay Rakshit, S.L. Jat, Romen Sharma and Ramesh Kumar Pulses: N.P. Singh and C.S. Praharaj Soybean: Nita Khandekar and Sanjay Gupta Mustard: P.K. Rai and R.S. Jat

Publication

June, 2021

Copies

200

Published by

Director ICAR-Indian Institute of Maize Research PAU Campus, Ludhiana, Punjab-141004 Phone: +91-161-2440048 Fax: +91-161-2430038 Mobile: +91-9492430207 Email: director.maize@icar.gov.in Website: https://iimr.icar.gov.in/

त्रिलोचन महापात्र, पीएच.डी. सचिव, एवं महानिदेशक

TRILOCHAN MOHAPATRA, Ph.D. SECRETARY & DIRECTOR GENERAL भारत सरकार कृषि अनुसंधान और शिक्षा विभाग एवं भारतीय कृषि अनुसंधान परिषद कषि एवं किसान कल्याण मंत्रालय, कृषि भवन, नई दिल्ली 110 001

GOVERNMENT OF INDIA DEPARTMENT OF AGRICULTURAL RESEARCH & EDUCATION AND INDIAN COUNCIL OF AGRICULTURAL RESEARCH MINISTRY OF AGRICULTURE AND FARMERS WELFARE KRISHI BHAVAN, NEW DELHI 110 001 Tel.: 23382629; 23386711 Fax: 91-11-23384773 E-mail: dg.lcar@nic.in

MESSAGE

I am happy to note that a policy paper on "Diversification of Cropping System in Punjab and Haryana through Cultivation of Maize, Pulses and Oilseeds" has been conceptualised. This policy paper presents the potential of alternate cropping systems compared to the traditional rice-wheat system. The Green Revolution brought significant growth in agricultural production. The technologydriven revolution made Punjab and Haryana as the epicentre of 'Green revolution'. The paradigm shift brought by the green revolution technology was cultivation of rice, an alien and water-intensive crop to these states and made rice-wheat rotation the most prevalent cropping pattern. These two states experienced a rapid expansion of area under paddy. Policy support for MSP in favour of rice and wheat phased out the other crops. The rice - wheat cropping system threatened the sustainability of agriculture in this region with lowering of water table and rice residue burning causing serious threat to human and animal health.

I hope that the publication will be useful to the policy makers, researchers and extension personnel. I congratulate the authors and contributors in bringing out this useful Policy Paper.

Uugnt.

(T. Mohapatra)

Date: 17th June 2021 Place: New Delhi-110 001

भारतीय कृषि अनुसंधान परिषद कृषि एवं किसान कल्याण मंत्रालय भारत सरकार, कृषि भवन

नई दिल्ली 110001, भारत

डॉ. तिलक राज शर्मा उप महानिदेशक (फसल विज्ञान)

Dr. T. R. Sharma, Ph.D FNA, FNAAS, FNASc, JC Bose National Fellow Deputy Director General (Crop Science)

Indian Council of Agricultural Research

Ministry of Agriculture and Farmers Welfare Govt. of India, Krishi Bhavan New Delhi 110001, India

FOREWORD

Punjab and Haryana have contributed significantly towards ensuring food security of the nation by revolutionizing the cultivation of rice and wheat. The dramatic changes in the scenario took place in mid 1960s when area under rice and wheat started increasing in these states. This was coupled with steady increase in productivity due to improved seeds, better crop management encompassing irrigation and fertilizer application and assured procurement under minimum support price (MSP) of these two crops. Though comparable technologies in terms of varieties and crop production are available, the policy support favoured rice and wheat, marginalizing other crops like maize, pulses, mustard and cotton. Though wheat has been a predominant crop in the region for ages, rice was a new introduction. With lucrative return due to policy support the rice-wheat cropping system rapidly spread across Punjab and Haryana, leading to largely mono cropping in the region. Though the rice-wheat cropping system started with canal irrigation, soon tube well irrigation replaced other, putting tremendous pressure on ground water on one hand and the energy budget on the other. Rampant use of agro-chemicals to realize higher productivity adversely affected the environment. The increase in rice and wheat led to massive procurement of these two crops resulting in pressure on public expenditure on procurement and storage. Rice crop with lower decomposition rate has created the problem of residue management. Widespread rice straw burning is attributed to poor air quality in the north-western Indo-Gangetic plains and in the National Capital Region, which has put the country on the world radar. Over the last three years Government of India has invested heavily in supplying machinery to manage rice straw. However, this has given limited result. It is right time to give renewed emphasis on alternate crops to address the adverse issues due to rampant cultivation of rice. Crop diversification is bound to bring a lot of changes in the scenario. However, the process of diversification needs to be seen in the prism of system approach rather than individual crop basis.

Maize, soybean and pigeonpea have the potential to diversify the rice cultivation during *kharif* season. During *rabi* season mustard can be an alternative to diversify the wheat cultivation. Maize has dual advantage as it is both, an industrial as well as food and fodder crop. In this context, the Policy Paper on "*Diversification of Cropping System in Punjab and Haryana through Cultivation of Maize, Pulses and Oilseeds*" can throw light on the advantages of various alternate cropping systems compared to the traditional rice-wheat cropping system, in which ICAR will play the role o technology provider implemented by the state governments. I appreciate the efforts of the ICAR Crop Science Division Institutes in bringing out this timely Policy Paper. I am sure that this will give new direction towards diversification of cropping system in Indo-Gangetic Plains benefitting the farmers, consumers and environment. I complement the authors and contributors for their significant contribution to this Policy Paper.

PREFACE

Rice and wheat have contributed significantly to bring India from a situation of ship-tomouth to self-sufficiency in food production through the most celebrated phenomenon in agriculture, the Green Revolution. As a result, the food production has risen from 82.02 million tonnes in 1960 to 305.44 million tonnes in 2020-21. The states of Punjab and Haryana played a crucial role in this regard wherein the acreage under rice-wheat cropping system surpassed all the crops and cropping systems. Cereal based monocropping is the most common phenomenon in the region. Overdependence of these dual cereal crops (rice and wheat) on tube well irrigation has resulted in depletion of the ground water to its critical level. In addition, wide spread utilization of fertilizers and plant protection chemicals have further contaminated both ground water and environment causing adverse effects on health of both human and animals. Large scale procurement of rice and wheat, and their storage and distribution have also put huge budgetary pressure on the economy, which has become unsustainable in long run. Besides these, the huge left over crop residue from rice, with poor nutritive value and poor decomposition rate, has become the most challenging task to manage it in a sustainable manner. Happy seeder, super seeder, rice-based power plant and paddy straw decomposer have received a lot of attention in recent years with the support from Central Sector Scheme on *in-situ* Management of Paddy Straw. However, these have given limited success. Such schemes alone may not vield desired results unless complemented with diversification of the rice-wheat cropping system with much more viable and profitable cropping systems. Efforts have been made in this Policy Paper on "Diversification of Cropping System in Punjab and Haryana through Cultivation of *Maize*, *Pulses and Oilseeds*" to propose alternate cropping systems for maximization of system productivity and return, which would also address the issues concerning ground water depletion, residue burning and pressure on public exchequer. Implementation of the alternate cropping systems in at least 40-50% of currently area under rice-wheat in Punjab and Haryana could significantly reduce the adverse effects of rice-wheat cropping system. While implementing the policy, ICAR and its constituent institutes will provide the technological stopgap, while implementation will have to be made by respective state governments and state agricultural universities through its network of Krishi Vigyan Kendras and extension agencies under the departments of agriculture.

The authors sincerely thank the Secretary DARE & Director General, ICAR and Deputy Director General (Crop Science), ICAR for their critical comments in improving the discussion and content in the paper. Without their support and encouragement it would not be possible to bring out the document. The inputs from the Directors of ICAR-Indian Agricultural Research Institute and ICAR-National Institute of Agricultural Economics and Policy Research are sincerely acknowledged. The authors deeply value the contribution of many scientists, who could not be named here, in formulating this document.

Authors

CONTENTS

S. No.	Topics	Page
1.	Operating environment and background	1
2.	Candidate crops for diversification of rice-wheat	3
	cropping system	
3.	Recent area, production and yield of plausible	10
	diversifiable crops	
4.	Value chains of candidate crops	10
5.	Mapping of diversifiable crop specific processing	12
	industries in Punjab and Haryana	
6.	Competitive analysis of various crops vis-a-vis rice-wheat	t 14
	cropping system	
7.	Suggested intervention	18
8.	Road map for diversification	22
9.	Mapping of institutes to contribute in cropping	24
	system diversification	
10.	Epilogue	29
11.	References	31
12.	Annexures	33

Irrigation in rice field

Rice straw burning

1. Operating environment and background

The Green Revolution of 1960s transformed the course of Indian agriculture bringing about an exponential growth in agricultural production and helped to achieve food security. The technology-driven revolution was comprised of a package of subsidized modern inputs – irrigation, improved seeds, fertilizers and pesticides complemented with public procurement and price support policies and extension services.

• The states of Punjab and Haryana became the epicentre of 'Green Revolution'. These two states experienced a rapid expansion of area under paddy, from 4.77 lac ha in 1966 to 45.50 lac ha in 2018 (Fig. 1). The total area under wheat in these two states also increased from 23.53 lac ha in 1966 to 60.73 lac ha in 2018. During the same period, the area under maize declined drastically. In Punjab, maize area has reduced from 4.44 lac ha to 1.09 lac ha during the mentioned period, while in Haryana the corresponding figures are 87 thousand ha and 5.9 thousand ha, respectively. The cumulative area under pigeonpea during 1966 was 7.2 thousand ha, which dropped to 4.2 thousand ha. The area under rapeseed and mustard showed a declining trend in Punjab from 116 thousand ha in 1966 to 30.5 thousand ha in 2018. However, in Haryana it increased from 198 to 609 thousand ha during the same period.

- In Punjab alone the rice area increased from 5.5% to about 39.5% of the gross cropped area during the period from 1966 to 2018 (Fig. 2). The rice-wheat cropping pattern has inflated from about 37% of the total cultivated area in 1966 to about 84% in 2018 and marginalized the traditional maize-wheat cropping pattern and other coarse cereals and pulses.
- Haryana experienced shift in area share of rice-wheat cropping system from 20% in 1966 to about 61% of the gross cropped area in 2018, further marginalizing prevalent crops like maize, oilseeds and pulses.

& mustard in Punjab (A) and Haryana (B)

- Expansion of canal irrigation system in Punjab has significantly contributed towards initial increase in rice area. However, with the irrigation sources expanded from surface canal systems to tube-well based irrigation the share of canals plunged from 38.5% in 1966 to 28.6% in 2018, while that of tube-wells increased from 21.2% to 71.0% during the same period. Rural electrification and subsidised power have caused overdependence on ground water and notably the number of tube-wells increased from 1.92 lakhs in 1970 to 6.0 lakhs in 1980 and to more than 14.76 lakhs in 2019-20 (GoP, 2020). In other words, currently there are about 36 tube-wells per sq. km of the net sown area in Punjab. Out of the total tube wells, 13.36 lakhs (>90%) are electric operated tube wells (GoP, 2020).
- In Haryana, the share of tube well irrigated area is about 62% in 2018. During 2018, more than 8.21 lakhs tube wells were operated for irrigation purpose. About 5.46 lakhs tube wells (>66%) are electricity powered (GoH, 2020).
- Over exploitation of groundwater led to the decline in ground water table in north western India between 1973 and 2001 @ ~0.2 m per year, which has accelerated by five-fold (@ 1.0 m per year) between 2000 and 2006 (Jat *et al.*, 2019). This has also led to increased energy demand for pumping and increased cost for installing deeper submersible pumps. The Punjab government gave free electricity worth of around Rs.7180 crores to the farmers during 2020-21, over 70% of this goes to rice crop cultivation alone (Anonymous, 2021). On the other hand in Haryana, the electricity supply to farmers is highly subsidized and, on average, farmers pay only Rs. 0.11/kWh against a cost of supply of Rs. 7.34/kWh. Annual farm subsidy burden of Rs. 6196.90 crores, amounting to an average per pump annual subsidy of Rs. 101220 (Anonymous, 2019).
- The groundwater development (ratio of gross groundwater draft for all uses to net groundwater availability) in Punjab and Haryana is 166.0% (highest in the country)

and 137.0%, respectively, which is well above the national average of 63.3%. Out of the 138 blocks in Punjab assessed for ground water, 109 blocks have been categorized as 'Over-exploited', two as 'Critical', five as 'Semi-critical' and 22 as 'Safe' with no saline block in the state. In Haryana, out of total 128 blocks assessed for ground water, 78 have been categorized as 'Over-exploited', three as 'Critical', 21 as 'Semi-Critical' and 26 as 'Safe' (CGWB, 2019).

- With increase in area under rice and wheat in Punjab and Haryana, the rice production has increased from 5.61 lakh tonnes to about 173.38 lakh tonnes between 1966 and 2018, while wheat production has increased from 35.48 lakh tonnes to 308.36 lakh tonnes during the mentioned period. Public procurement of rice and wheat has caused tremendous pressure on the capacity of storage of the grains. Both public procurement and storage have incurred huge investment of public money, which often turns out to be unsustainable. During 2018, 152.75 lakh tonnes of rice and 179.86 lakh tonnes of wheat were procured from these two states (GoI, 2019), which amounts to Rs. 26,731.25 crores and Rs. 33,094.24 crores, respectively.
- In addition, rice cultivation has created some serious problems and environmental threats, *viz.*, depletion of inherent soil fertility, lowering of water table, increased soil and water pollution (Chauhan *et al.*, 2012) and enhanced greenhouse gas (GHG) emission in rice cultivation (Gupta *et al.*, 2015) or burning of its residue resulted in serious threat to human and animal health (Bhuvaneshwari *et al.*, 2019). Of late the growth rates of rice and wheat yields are either stagnating or declining, say rice yield growth rate in Punjab in 1970s was 1.9% (1970-1980) which is currently at 0.3% (2008-2018). During the same time, the growth rates of wheat yields was 2.0% (1970-1980) and 1.5% (2008-2018), respectively. Corresponding figures for Haryana are 1.9% and -0.7% for rice, and 1.3% and 1.2% for wheat, respectively (DAC, 2021).

2. Candidate crops for diversification of rice-wheat cropping system

The adverse environmental, economic and health impacts of rice-wheat cropping system in the north-western Indo-Gangetic plains calls for immediate diversification of this cropping system through introduction of more sustainable cropping system(s). This requires three considerations, *viz.*,

water requirement of the crops, economic return and possible market. With relative lower water requirement coarse cereals, pulses and oilseeds can be a potent alternative to water guzzling crops like rice and sugarcane (Fig. 3). Considering water requirement and possible market demands and economic returns major crops which can replace rice during *kharif* season are maize, pigeonpea and soybean, and mustard and chickpea during *rabi* season to replace wheat. Mungbean with short duration can fit excellently well in these alternate crops-based cropping systems ensuring additional income to the farmers and additional fertility to the soil.

A. Maize

4

Maize has almost one third water requirement of rice and less than one fourth of sugarcane, with cropping duration (100-110 days) less than rice (120 days) and sugarcane (~300 days). One Kg of maize grain requires 800-1000 lt of water against 3000-3500 lt of water for one Kg rice production. Maize residue with higher C:N ratio than rice has faster decomposition, thus has ability to add organic carbon to the soil and improving soil quality. Maize, particularly specialty corns can effectively be grown under organic system as sole or inter crop with other vegetables in peri-urban agriculture, giving avenue for additional income to the farmers. Maize followed by wheat has higher system productivity than rice-wheat system due to scope for early sowing of wheat crop leading to escape of terminal drought. Maize (900-1400 kg CO₂ eq/ha) has very less global warming potential (GWP) as compared to rice (3700-4700 kg CO₂ eq/ha). Rice production gives nearly 300-400 kg CO₂ eq/ha due to methane emission which is not with maize cultivation. Maize production consumes only 278 kwh/ha electricity as against that of rice with 2925 kwh/ha.

Maize has predominantly industrial uses like in feed, starch and recently for ethanol production, besides having niche area in processed foods in form of breakfast cereals, snacks and pet food in addition to use of specialized maize, *viz.*, baby corn, sweet corn, popcorn and silage maize. Supply of good quality (dry and aflatoxin free) maize in bulk quantity can potentially help in establishment of such industries in the states and encourage contract farming benefitting both maize farmers and the industries besides generating employments and addressing environmental and health issues.

- *a. Feed industry*: Maize with high energy value and less anti-nutritional properties like low fibre content has tremendous demand in feed industry. Over 47% maize is currently used in poultry feed and 13% in animal feed (Fig. 4). The current size of feed industry is 85-90 million tonnes. With projected growth rate of 8% in feed sector, particularly in poultry and cattle feed, demand for maize will increase by many folds. Punjab and Haryana can be a major supplier of maize in this regard.
- b. Starch industry: The starch industry in India has a crushing capacity of approximately 65 lakhs tonnes. Maize is the most common raw material in starch

Policy Paper

industry. With projected growth of 5.1% in starch industry, demand for maize is going to increase further. Maize starch has wide utility in food, paper, pharmaceutical and textile industry, and it can be used for production of bio-plastics, a way to address the issue of plastic pollution. A steady supply of maize will open up the avenue of employment generation in the region.

- *Ethanol industry*: The government has set targets of 10% bio-ethanol blending of С. petrol by 2022 from current target of 5%, which is further aimed to reach 20% by 2030 to curb carbon emissions and reduce dependence of the India on imported crude oil. With 5% targeted blending the demand for ethanol stands at 4.2 billion litres, which by 2022 with 10% blending target sets to cross 6 billion litres, and by 2030 with 20% blending target the demand will cross 10 billion litres. Against this, the current production of bio-ethanol in the country is around 3.0 billion litres. Sugarcane is the main source of bio-ethanol in India, while across the world maize grains are extensively used for ethanol production. Contrary to maize, sugarcane requires over four times water (Fig. 3) and has crop duration of 10-15 months against maize of around 100-110 days. The yield of ethanol from sugarcane is ~5000 l/ha (70 t/ha cane yield) while maize gives ~2000 l/ha (5 t/ha grain yield). Thus, per unit time energy output from maize is much higher than sugarcane with much lesser water footprint. Maize in ethanol production also gives a high protein and oil rich nutritious feed DDGS (Distilleries Dried Grains and Soluble) as a valuable by-product. Ethanol industry with growth rate of 12.5% can create huge market demand for maize grains.
- d. Processed food industry: Nearly, 10 lakh tonnes of maize is consumed in processed food industry to prepare snacks, breakfast cereals and pet foods. Processed food industry with 11.5% growth rate can absorb significant proportion of maize produced in the country. Popcorn industry has current size of 90,000 tonnes with a market cap of around Rs. 550 crores. However, 40% of the popcorn is imported, mainly from the USA. Baby corn and sweet corn also have huge potential to create rural entrepreneurship and catching international market with added advantage to supplement the dairy industry with its by- products.

e. Silage maize, as alternate source of fodder and livelihood: Maize silage has huge potential with current market size of 4-5 million tons. With roughly 4.5% growth rate of dairy sector, silage business is going to play an important role. Silage maize with duration of around 80 days can increase the cropping intensity significantly and help in doubling farmers' income.

The cumulative demands as food, feed and starch have driven the maize production in the country, which has increased by over 12 folds as compared to 1960s. However, the projected growth rates in respective maize-based industries the demand for maize is expected to increase to 33 million tonnes by 2025 and nearly 43 million tonnes by 2030 (Fig. 5). In 2020-21 India has produced record maize production of

30.24 mt. Thus, there is immense scope that increased demand of maize in domestic market itself can absorb the increased production. International demand for maize is also very high and India has strategic advantage to cater the need of maize in South-East Asian (SEA) countries. With increased international maize price, Indian maize can have better access in world trade of maize grains.

B. Pulses

6

Pulses are a major source of protein for majority of Indians, particularly the vegetarian population. India is the largest producer, consumer and importer of pulses in the world. The production trend in pulses in Fig. 6 indicates that the country produced only 12.0-14.0 million tonnes of pulses till 2010, which has reached 24.0-25.0 million tonnes at present.

Pulses such as chickpea, pigeonpea, lentils, beans and peas form important part of

general food basket in India. Promoting cultivation of pulses can help India overcome problem of malnutrition, improve soil fertility by nitrogen fixation and provide income support to farmers. Though India has attained selfsufficiency in pulse production, India can be a potential exporter of pulses like pigeonpea, chickpea, mungbean etc.

Per cent share of different pulses in terms of production is given in Fig. 7 (with the highest of 45% for chickpea followed by 17% for pigeonpea) along with the future target for the commodity (Fig 8).

Pulses consume much lesser water than rice (Fig. 3). Pulses need to be promoted as it plays a crucial role in **e**nsuring food security, public health, promoting environmental sustainability and climate change mitigation. Keeping in view of the benefits accrued through pulses, diversification of rice especially with pigeonpea in rice–wheat cropping system assumes greater significance with the following advantages.

- a. Biological Nitrogen fixation: Pigeonpea crop fixes around 40 kg N/ha through biological nitrogen fixation (BNF) which is equivalent to 87 kg urea (Rs. 870 without subsidy) leading to direct saving following its cultivation. Besides the crop also has a leaf and flower fall (and root residues) of 2-3 t/ha which supplies around 8-16 kg N, 2.5-5 kg P and 13.5-24 kg of K per ha to the subsequent crop(s) in rotation. In addition, pigeonpea crop requires less fertilizer as compared to rice and is regarded as soil building crop.
- *b. Water use efficiency*: Water use efficiency is more than double for pulses (3 kg grain/ha-mm for irrigated rice against 6-8kg/ha-mm for pigeonpea.
- c. Nutritional quality: Nutritionally superiority of pigeonpea gives it an edge over rice. A 100 gram of rice (white, cooked) contains approximately 130 Cal energy, 28.7 g carbohydrate, 2.36 g protein and 0.19 g fat, while pigeonpea contains 335 Cal energy, 22.3% protein, 57.6% carbohydrate, 1.7% fat, 124 mg Ca, 304 mg P, 5.8 mg Fe, 133 mg Mg and a rich source of amino acids. Pulses are rich in lysine (67.1 mg compared to 30.5 mg of lysine /100 gram protein in cereals). Pulses are also rich in dietary fiber (fiber along with low fat and phytates causing lowering in blood cholesterol), hormone analogs (hypoglycemic effect i.e., lowering of blood sugar) and antioxidants (protection against cancer). Health benefits of pulses are thus huge as these are having high nutritional value. Besides these, pulses also prevent several chronic diseases such as cardiovascular ailments, diabetes, blood pressure, obesity and cancer. Pulses have low glycemic index (29-48) which is attributed to presence

of slowly digestible starches and resistant starches. Therefore, these are considered as nutritionally important crops.

- *d. Multiple uses*: Pulses, especially pigeonpea has multiple usages as *dal*, *dal*-mix and by-products for biscuits and other value added products. Traditionally, it has been used with proven diversity including lac production, fuel wood, soil conservation, fodder, food and medicine.
- *e. Cost of production*: Pulses are having lower cost of production (Rs. 6000 to 9000/ha less) over that of rice as rice has a relatively complex process incurring higher expenses for growing it (nursery raising, transplanting etc). Besides these, relative average gross return for pigeonpea is higher (173% for pigeonpea compared to 100% for rice).
- *f. Import bill*: There is possibility of lowering down of country's import bill through higher production of pulses. In fact, as a result of higher production of pulses, imports of pulses declined to about 1.8 million tonnes during April-Dec 2018, as against over 5 million tonnes during April-Dec 2017. Similarly, pulses especially pigeonpea has a great demand within the country and outside including SEAsia.

C. Oilseeds

India meets 60% of the domestic edible oil requirements valued Rs. 78000 crores through imports. The country needs 25 million tonnes of edible oils to meet its present requirement at the current consumption level of 19 kg per person per annum. It has to increase 33.4 million tonnes edible oils from 47.7 million tons oilseed to feed 1.43 billion population by 2025. In this context, during *kharif* season soybean and during *rabi* season mustard can be potential crops to replace area under rice and wheat, respectively.

C1. Soybean

Soybean is one of the main oil seed crop and is the only vegetable crop with high protein content. Soymilk is cheaper than other sources and has a promise for flavoured milk with varieties developed having less beany flavour. Tofu, prepared from soybean is highly nutritious and is complimentary to paneer. Soybean also has many therapeutic usages like overcoming problems related to menopause because of the presence of estrogen like compound and presence of flavones that protect from cancer. Soybean holds potential as vegetable to be grown between April to July when green peas are not locally available. Indian soybean deoiled cake too is in high demand and accrues foreign exchange to the worth of Rs.3349 crores during 2019-20, which is extensively used in feed industry along with maize.

a. Crop demand in present and future: Soybean processing industries are operated only to their 50% capacity and the huge demand for oil and feed exists in the country, which may be met by increasing soybean production. Soybean also has high potential in the secondary agriculture sector.

- *b. Industrial usage*: Soybean has industrial usages apart from edible oil and the food usage such as soy milk, soy chunk etc. Soy isolate may have use as supplement and protein bars. Lecithin is a by-product used in the chocolate industry, fermented soybean, vegetable soybean and feed are other uses wherein soybean may find a niche market.
- *c. Profitability*: The cost of cultivation for soybean is much lower (around Rs. 30,000) as compared to that of rice (Rs. 78,000).
- d. Fertilizer subsidy: The estimated N contributed through residual biomass of soybean (RBNS) that include biological nitrogen fixation, leaf fall, root nodules and rhizo deposition accounts to around 50 kg N/ha which corresponds to roughly 110 kg urea. Moreover, soybean also provides other nutrients like P, K and micronutrients for the subsequent crops. The amount of N applied to soybean is only 25 kg N/ha as compared to rice (120 kg N/ha).
- *e. Organic production*: With the increasing trend towards organic farming there is great potential of organic food and feed form soybean for domestic use as well as for exports.
- *f. Vegetable protein benefits*: Soybean protein is the most economical source of protein and is considered as a complete protein like milk and egg.
- *g. Multiple uses of the crop*: Soybean has multiple usages for oil, soy isolate, soy chunk, lecithin, vegetable soybean, fermented soybean, neutraceutical and feed.
- *h.* Water footprint: The water use and efficiency concerning soybean cultivation is around 75-80 cm and 20-25 kg ha-cm⁻¹, respectively and these are much better than 90-250 cm for rice.
- *i.* Soil health and addressing environmental issues: Soybean cultivation improves soil health through symbiotic nitrogen fixation. Soybean residues may be a substrate for mushroom industry and decompose very fast, not requiring burning unlike the paddy straw. In soybean, maximum values of GHG emissions amount to 59% to 85% are due to N₂O and methane emissions represent less than 3%. In contrast to this maximum GHG emission in rice is from methane which has been estimated to 875 kg/ha/season (Bhat and Beri, 1996) at Ludhiana.

C2. Mustard

Mustard is a potential *rabi* oilseed crop to replace area under wheat with substantial consumption potential in the industry. It has relatively lesser water requirement (300 mm) compared to wheat (600 mm). The crop has good production potential, where the cultivation is supported with suitable technology intervention and knowledge inputs. It can be grown under diverse agro-climatic zones in both irrigated and rainfed areas with ability of salt tolerance. It is suitable for sole and mixed cropping. This gives higher return with low cost of production. Mustard oil has lowest saturated fatty acids and seed meal has high content (36-38%) of quality of protein.

3. Recent area, production and yield of plausible diversifiable crops

Among the proposed crops for diversification of rice-wheat cropping system maize has highest percentage, while soybean has extremely limited area under cultivation in Punjab and none reported in Haryana. Among these crops, maize has the highest yield realization (35.8 g/ha and 28.3 q/ha in Punjab and Haryana, respectively). Though the area of maize has dropped substantially in Punjab over last several decades, mainly due to in roads of rice, in recent past it has recorded a positive growth trend (Fig 9,

Annexure I). The area under other crops is relatively stagnant at around 2.45 thousand ha for pigenopea, 30.5 thousand ha for mustard. In case of Haryana the area under maize remains stagnant. The areas under other crops in Haryana, were around 3.0 thousand ha for pigeon pea and 579 thousand ha for mustard.

4. Value chains of candidate crops

Maize value chain: Maize-based value chain is quite extensive, which principally may be dealt as feed, starch, ethanol, processed food, processed specialty corns (baby corn and popcorn) and silage. While use of feed, starch and ethanol requires establishment of dedicated factories, processing of maize for food like snacks and breakfast cereals or pet food requires smaller processing plants. Baby corn and popcorn processing also can be done in a micro level through aggregation of Farmers Producer Organizations (FPOs), Farmers Producer Companies (FPCs) and Self Help Groups (SHGs).

Pigeonpea value chain: The awareness generation regarding BNF, leaf fall and other carryover effects by pulses in addition to less water use can further convince the farmers to reduce the usage of fertilizers especially N fertilizers. To attain socially optimal level of pulse farming, the pulse growers should be provided additional support for their services to environment also. Encouragement could be provided in the form of equivalent subsidy on phosphorus fertilizers as P application in pulses increases nodulation and nitrogen fixation and balance nutrition besides increasing yield of these crops (ideal NPK ratio of 4:2:1). On ecology front, this could result in reducing GHG emission and prevent other issues associated with synthetic fertilizer based production, like health, eutrophication and pollution. Pigeonpea produced locally can be

transported to consumer states for its processing and consumption. It can also be processed locally (*dal*) and transported to consumer states (with better transportability/storability due to split *dal*) for sale (under both PDS and open market). Some of the quality produce can be processed for export (bolder and perfect-colored ones). A part of the produce can be kept as seed for future use. Lot of scope exists for pigeonpea based value addition including its by-product use. Several homemade recipes (*barfi, ladoo, sev, kachri, sweet puries, kachauri masala*) are made from pigeonpea milling by-products. Biscuit is developed incorporating pigeon pea husk and cotyledon powder mixture in different proportions. Value added products from pigeonpea milling by-product are rich in protein, fiber and phenols, thus, have higher food value. Fractional separation of pigeonpea milling by-product yields 25% cotyledon powder for making *dal* analogue by unheated extrusion. Powder fraction can directly be poured into boiling water to make *dal*. Colour of *dal* is little brownish (due to husk in the mixture) while protein content is similar to dal. Alternatively by-products are useful for soup, gravy thickener and protein enhancer.

Soybean value chain: Soybean is one of the major candidate for crop diversification in Punjab and Haryana with its value chain involving stakeholders at pre-production, production, post production and processing (quality seed, input supplier, mechanization, oil processors, soy food cottage industries for the manufacture of soy products like soy milk, soy paneer (tofu), vegetable soybean, soy protein concentrates, cold oil processing industries) and consumers.

Mustard value chain: Rapeseed-mustard has a broad diversity of oil-types in addition to canola or high-oleic and low-linolenic cultivars. Moreover, its oil contains valuable minor compounds such as tocopherols (vitamin E) and phytosterols. Enhancing such components by breeding may result in value addition. The meal contains relatively high amounts of anti-nutritive fibres, phenolic acids, phytate and glucosinolates. Break down products of glucosinolates such as allyl isothiocyanates, which are present in the seed meal fraction of oilseed Brassica, have anti-cancerous properties. Isolation of these compounds would add value to this crop. The future thrust in quality improvement would be to improve the nutritional and storage quality of rapeseed-mustard seed meal contains high-quality protein that can be used as a valuable animal feed. Biscuits fortified with mustard flour are found acceptable in nutritional, sensory and textural characteristics. Defatted mustard flour can replace wheat flour at 5, 10, 15 and 20% incorporation levels in biscuit preparation. There is scope to establish different value chains from production to processing and supply for quality oil (single zero, double zero, high oleic oils etc.), quality mustard oilcake (primary and secondary products) and secondary oil products (medicinal and medicaments) in the region. Already, Canola mustard is under cultivation in Punjab, which may be increased further to cater the domestic need as well as export promotion.

5. Mapping of diversifiable crop specific processing industries in Punjab and Haryana

Maize: Maize is principally used in the feed industry. There are more than 26 feed factories in Punjab and 28 in Haryana (Fig. 10). The feed, mainly poultry feeds produced by these firms are being locally consumed. There is one starch industry in Jalandhar and Yamunanagar each. However, all these factories predominantly import maize grains from outside the states, *viz.*, Bihar, Madhya Pradesh, Maharashtra and others. There are 9 distilleries in Punjab and 12 in Haryana (Fig. 10). Though these distilleries absorb much of the locally produced grains, they are also dependent on supply of maize grains from outside the state. Thus, these industries assume much potential to process maize grains if produced locally. Maize-based food processing plants are not documented yet in these states. The food processors are apprehensive of aflatoxin contamination and soft grain traits in the local produce. Speciality corn processing has immense potential. In Ludhiana, there is a baby corn processing unit, which mainly caters the export market in Europe. The baby corn and sweet corn processing hubs in Sonepat district are living examples of the kind of revolution in rural economy these technologies may bring in.

Fig. 10. Mapping of maize based industries in Punjab (A) and Haryana (B)

Pigeonpea: With the rising per capita income and increasing population, demand for pulses has increased over the years. There is very little establishment of the processing and value addition industry for pigeon pea in the region owing to very less raw materials availability. The *dal* mills could be established for value addition and the present rice mills establishment could be explored with suitable modification.

Soybean: Punjab is the number one state in utilizing soybean for food usages where about 200 small scale industries (tofu, soy-milk, soy chap, soy nuts etc.) spread over the state are operating presently. However, oil extraction is at a very low scale (~50 Kg/day) and limited to cottage industry since soybean production from these states is negligible.

Mustard: Mustard is principally consumed as edible oil in human diet. The by-product, oil cake is used in animal feed due to high protein content. Oilcake is used for value added products like fortified biscuits and four. The mustard oil is rich in certain

Parameters	Maize	Soybean	Pigeonpea
Strength	Mechanized cultivation - Seed to	 Suitable for mechanized cultivation 	 Highly nutritive crops
	Seed	 High protein crop suitable for food 	 Fixes atmospheric nitrogen
	Industrial uses - Feed, Starch and	usage	Industrial uses - Dal and by-
	Ethanol	Industrial uses - high oil and soy	product making
	 High yield and highest growth rate 	meal for feed industry	 Water and energy saving (80%)
	among cereals	 Water and energy saving over rice. 	over rice
	Water and energy saving - 80%	Low GHG emission	 Diverse uses and types like Foo
	over rice		Value addition and Fuel
	Low GHG emission		 Tolerate partial drought and heat
	Diverse uses and types - Sweet		condition
	com, Pop com, Baby corn and		Low GHG emission
	Silage		
	Livestock promotion - complement		
	well		
Weakness	 Waterlogging susceptibility, more 	 Lack of market intelligence and 	 Susceptible to water logging at
	at early crop stage	linkages	initial stage
	 High moisture at harvest leading to 	 Vulnerable to unpredictable 	 Vulnerable to unpredictable
	aflatoxin contamination and lower	climatic variability	climatic variability
	realized market prices	 Limited popularity as food 	 Lack of market intelligence and
	 No policy support 	No policy support	linkages
	 Lack of local market and linkages 	 Lack of awareness about the 	
		soybean crop benefits.	
Opportunity	 Market demand-domestic and 	Demand of processing industries in	 High demand for consumption
	export		due to taste
	 value addition and employment 	 Opportunity for establishment of 	 Opportunity for establishment of
	generation	high value soy protein isolate	Processing industry
	Entilation Investory productivity		
	 Demand Ior bloctnanol Gluten free atta is gaining demand 	 Value addition and employment generation 	generation at block and village level
	 Climate change 	Bonormon	
Threat	 Damage by wild animals like blue 	Import of soy and its oil	Problem of blue cows
	cow, stray cattle	 Unpredictable climate 	Pod borer infestation
	 Poor drying and storage facility 	 Appearance of new diseases 	 Climate change effect is high
	Emerging insect-Fall Armyworm		

Table 1 SWOT analysis of nlausible groue for diversification in Duniab & Harvana

Rapeseed & Mus	 Mechanized production 	processing and value ad
	-	

भागअनुसं HIMR

ard

- ldition Suited for diverse agroecological situations
 - Water energy saving (less than

(%)

 Diverse usages - Quality oil (Canola), Medicaments, Lubricants, Super food etc. half of wheat)

> Food, d heat

 Quality oilcake for animal feed Tolerate moderate salinity and

- drought conditions
- Susceptible to water logging at initial stage ng at
- e and
- tion

international market (Canola oil).

Demand in domestic and

Value addition and processing

Quality animal feed

- tent of
 - /ment lage
- Biotic stresses like aphid and Climate change (early and terminal heat and frost). stem rot

secondary compounds, which may be separated for medicinal and medicaments usages. Thus, there is lot of potential for both primary and secondary industrial growth and employment generation in this region. In Punjab and Haryana, more than 100 mustard oil extraction units exist, and processing and branding the oil as organic, value-added, *Kachi Ghani* and refined FSSAI certified oils exist. However, most of these units run short of produce locally, and source either seed or *Kachi Ghani* oil from Rajasthan and Uttar Pradesh. There is no documented information about secondary value added products industries, however, these have great potential in near future. Mustard cake in animal feed may also play significant role in increasing milk production and related industries in this region.

6. Competitive analysis of various crops vis-a-vis rice-wheat cropping system

Any crop substitution should be looked in system perspective, rather than individual crop output. Table 2 makes a comparison of the system perspective of different kharif crop based system. It is clearly depicted that alternative cropping systems are much more sustainable than rice-wheat cropping system. Table 3 suggests various cropping systems, which have been compared with the rice-wheat cropping system. It may be observed that the system productivity and profitability from all the alternative cropping systems is higher than that of rice-wheat cropping system with substantial savings on energy/electricity. It is often said that though maize has demand, it has failed to play a key role in diversifying rice in Punjab and Haryana. The realized price difference between rice and maize is key factor in this regard, while rice is procured on assured minimum support price (MSP), maize farmers, on an average receive Rs. 900 per quintal of maize grains in Punjab and Haryana. However, an empirical calculation based on current average productivity of rice and maize shows that rice has marginal advantage over maize provided the MSP is realized in both the crops (Table 4). Thus, to procure maize from one lakh ha vis-a-vis rice there will be additional expenditure of Rs. 89.35 crores in Punjab and Rs. 24.56 crores in Haryana. This cross subsidy can easily be diverted due to the savings in water, electricity and the pollution costs due to rice residue burning. The government can also pay the differential pricing (MSP minus market price) to the farmers directly through direct benefit transfer (DBT) without direct buying and thus expenditure on storage can be reduced substantially. Though the net returns is equal for maize in Punjab, it is higher in Haryana compared to rice but the existing mindset and operating environment focuses more on gross returns. Thus, the initial cross subsidization for energy saving will accelerate the adoption of new system. The cost of cultivation, which is higher in maize can substantially be reduced through introduction of mechanization from seed to seed (Bombaria et al., 2020). The above figures of cross subsidy are with existing productivity of maize in the states. However, extensive introduction of high yielding maize in a cluster manner can potentially increase the average productivity and thus, the cross subsidy may be slowly reduced. However, procurement of maize with this subsidized price needs to be ascertained through implementation of strict law. Considering demands for maize in this region, the price is not expected to be too low in open market.

XVIDBEIDX	
ADDRESS	
ICAR	

WEDATER LIME

(R)

	Soybean-based	Low	High	No such problem.	No such problem.	120 days	Easier, only direct seeding	Medium	Fully mechanized	Restoring/improving crop	Less leaching	Subsequent crops are benefitted and	results in higher system	ouncuvity and promability.	Lesser GHG emission and reduced urea consumption	Incentivization to farmers as	soybean is not an established crop in this region.	Highly deficit	Easily decomposable, can be kept on the soil s urface with zero-till planting	Soybean meal in livestock feed
ice-wheat CS	Pigeonpea-based So	Low Lo	Very high Hi	No such problem. No	em. 1	120-150 days 12	Easier, only direct seeding Ea	Medium Me	Not possible Fu	Restoring/improving crop health Re	Less leaching Le	Subsequent crops are benefitted Su	and results in higher system res		Lesser OHG emission and Le reduced urea consumption rec	Assured procurement at MSP. Inc		Highly deficit Hi	Easily decomposable, can be Ea kept on the soil surface with on zero-till planting pla	Not much scope So
based cropping system (CS) advantages over rice-wheat CS	Maize-based	Low (8-times lesser than rice)	High	No such problem.	No such problem	100-110 days	Easier, only direct seeding	Higher	Fully mechanized	Restoring/improving crop	Less leaching	Subsequent crops are benefitted and results in	higher system productivity and profitability.		A photo synthetically efficient C ₄ plant, there is no photorespiration under increased temperature results in lesser GHGs emission.	Presently no such policy.		Highly deficit	Green fodder is used for animal fodder, easy 1 dry fod der collection, easily decomposable, 1 can be kept on the soil surface with zero-till 2 planting or can be used for mushroom production.	e for livestock promotion as r, silage and grain for feed. The be used for grazing/feeding to any stage of crop growth. It has ry anti-nutritional compound.
_	Rice-wheat	Very high	Low	Very high	Nitrate and pesticide leaching.	Long (120-130 days)	Cumbersome and labour consuming	Less	Partially mechanized	Degrading crop	More leaching	Subsequent crop is affected,	resulting in low system	A above survive of promability.	A photo synthetically less efficient C ₃ plant, results in higher emission of GHGs (methane, nitrous oxide) under increased temperature.	Assured procurement at MSP.		Surplus	High silicon deters for use in livestock, problem of collection, burning due to less turmover time for wheat seeding.	Not much scope as mostly used for food and straw is unsuitable for livestock.
Table 2. Candidate crop	Parameters	Water requirement	Water productivity	Residue burning	Ground water pollution	Duration	Planting/crop establishment	Per day productivity	Mechanization	Soil physical health	Agrochemicals	Cropping system	optimization	Climate and Lance	Climate resultance	Policy intervention		State requirement/demand	Use of biomass/residue	Livestock promotion

Parameters	Rice-wheat	Maize-based	Pigeonpea-based	Soybean-based
Poultry industry growth	Less suitable.	Most suitable as major feed ingredient.		Most suitable as a feed ingredient.
Value addition	Lesser opportunity due to more direct food consumption	More opportunity as thousands of the products can be made from different types of maize.	More opportunity as many products can be made by food processing.	More opportunity as many products can be made by food processing and for oil extraction.
Export opportunity	Only basmati has competitive	Grain, feed, starch and baby com has great	Yes	Yes
	market	potential for the export in neighbouring countries as well as high value developed economy due to low cost of internal production and high external demand.		
Conservation agriculture	Very less scope	Highly suitable for conservation agriculture.	Suitable for zero-till wheat growing.	Suitable for zero-till wheat growing.
Electricity and	Very high requirement for water numning and urea	Very less requirement (82% lesser water than rice)	Very less requirement owing to lesser water and urea	Very less requirement owing to lesser water and urea
Termontation and of	Non-borneti dan und	Entro and of teamontation included in	resort water and unca	Transmisterion of moding to all
I ransportation cost of commodity	NON-DASTMAIL INCE USED IN FUDS incurs huge transportation cost to make available in whole country.	Extra cost of transportation incurred in import of maize from other state that increases the cost of raw material for industry at present.	Less due to high demand in cach state	Iransportation of produce to oil processing industries is required.
Handling and post-harvest losses	High, extra infrastructure for storage of surplus rice is required.	Low, no carry stock due to shortage in the state and multiple industrial uses. Need drying and storage silos.	Very low compared to other pulses	Medium, seed viability loses fast and care is required for proper transportation
Silage	Not suitable	Best material for making silage which can be used in livestock and exported after meeting internal requirement.	Not suitable	Not suitable
Intercropping scope	Not suitable	Most suitable crop for growing pulses, vegetables and flowers due to wide spaced rows of the crop.	Can be intercropped with, bajra, jowar, mungbean & ur dhean etc.	Can be intercropped with maize
Dietary diversification and nutritional security	Lesser opportunity	Quality protein maize can be integrated in diets of all group person for nutritional security.	Meets the protein requirement at household and National level	Meets the oil and protein requirement and reduced import bill for India.
Overall cropping system profitability	Less	More	More profitable @ 170% retum	More

भागअनुसं HIMR

Policy Paper

systemsvield (tha)cuttrvation (lakh/ha)cuttrvation (l	Mechanization GHG So	Soil health Residue burning	Water	Market	Energy/
((ha) ($akh/ha)$ ($lakh/ha)$ ($lakh/ha)$ reat- $[6.04]$ 0.82 1.85 $Fully$ 4 timesreat- 14.64 0.82 1.85 $Fully$ 4 timesreat- 14.64 0.87 1.62 $Fully$ 4 timesreat- 14.64 0.87 1.62 $Fully$ 4 timesnal 10.25 0.32 1.04 $Partial4 timesnal10.250.321.04Partial1 timesnal10.250.321.04Partial1 timesnal10.250.321.04Partial1 timesnal10.250.321.04Partial1 timesnal10.250.321.04Partial1 timesnal14.840.781.80PartiallyLesser thannal16.190.931.80PartiallyLessnal10.330.911.28PartiallyVery highat13.330.911.28PartiallyVery high$		problem	productivity (kg	demand	electricity
teat 16.04 0.82 1.85 Fully 4 times for the field			grain m ³)		saving
nmechanizedlesser thanteat- 14.64 0.87 1.62 $Pully$ lesser thanteat- 14.64 0.87 1.62 $Pully$ 4 timesa- 10.25 0.32 1.04 $Partial4 timesa-10.250.321.04Partial4 timesa-10.250.321.04Partial4 timesa-20.940.982.09PullyLesser thana-14.840.781.80PullyLesser thana-14.840.781.80PullyLesser thana-14.840.781.80PullyLesser thana-14.840.781.80PullyLesser thana-16.90.931.69PartiallyVery higha-16.90.931.69PartiallyVery higha-13.330.911.28PartiallyVery high$	4 times	Improves Residue is used in	2.37 (678 ha mm)	Very high	82%
teat lattice		livestock and easily		and	
	rice	degradable		increasing	
nal andmechanizedlesser than ricea- and 10.25 0.32 1.04 Partiallesser than ricea 10.25 0.32 1.04 Partial 4 timesa 20.94 0.98 2.09 FullyLesser than ricea 14.84 0.78 1.80 FullyLesser than ricea 14.84 0.78 1.80 FullyLesser than ricea 14.84 0.78 1.80 FullyLessa 16.9 2.50 PartiallyLessa 16.9 0.93 1.69 PartiallyLessat 13.33 0.91 1.28 PartiallyVery highat 13.33 0.91 1.28 PartiallyVery high	4 times	Improves Residue is used in	2.07	Very high	80%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		livestock and easily		and	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	rice	degradable		increasing	
	4 times	Improves Residue is used in	5.10	Very high	80%
n rice 20.94 0.98 2.09 Fully Lesser than n 14.84 0.78 1.80 Fully Lesser than n 14.84 0.78 1.80 Fully Lesser than n 14.84 0.78 1.80 Fully Less n 14.84 0.78 1.80 Fully Less n 14.84 0.78 1.80 Fully Less n 16.9 3.50 2.50 Partially Less Inchanized at- 16.9 0.93 1.69 Partially Very high Inchanized at 13.33 0.91 1.28 Partially Very high Inchanized		livestock and easily		and	
20.94 0.98 2.09 Fully Lesser than n 14.84 0.78 1.80 Fully Lesser than n 14.84 0.78 1.80 Fully Less n 14.84 0.78 1.80 Fully Less n 14.84 0.78 1.80 Fully Less n 16.19 0.93 1.69 Partially Less at- 16.19 0.93 1.69 Partially Very high at 13.33 0.91 1.28 Partially Very high	rice	degradable		increasing	
International International International International International 14.84 0.78 1.80 Fully Less International 57.0 3.50 2.50 Partially Less International 16.19 0.93 1.69 Partially Very high at 13.33 0.91 1.28 Partially Very high	Lesser than	Improves Residue is used in	4.35	Very high	75% as
Interpretation Interpr		livestock and easily		and	compared to
14.84 0.78 1.80 Fully Less n tato- 57.0 3.50 2.50 Partially Less tato- 57.0 3.50 2.50 Partially Less ton 16.19 0.93 1.69 Partially Very high at- 16.19 0.93 1.69 Partially Very high at- 13.33 0.91 1.28 Partially Very high		degradable		increasing	rice
n tato- 57.0 3.50 2.50 Partially lon at- 16.19 0.93 1.69 Partially mechanized at- 13.33 0.91 1.28 Partially very high at- mechanized	Less	Improve Residue is used in	7.00	Very high	%06
 57.0 3.50 2.50 Partially Less 16.19 0.93 1.69 Partially Very high mechanized 13.33 0.91 1.28 Partially Very high mechanized 	nanized	livestock and easily		and	
 57.0 3.50 2.50 Partially Less mechanized 16.19 0.93 1.69 Partially Very high mechanized 13.33 0.91 1.28 Partially Very high mechanized 		degradable		increasing	
Inechanized I6.19 0.93 I.69 Partially Very high mechanized I.3.33 0.91 I.28 Partially Very high mechanized	Less	Improves Residue is used in	Very high	Very high	80%
16.19 0.93 1.69 Partially Very high mechanized 13.33 0.91 1.28 Partially Very high mechanized	hanized	livestock and easily		and	
16.19 0.93 1.69 Partially Very high mechanized 13.33 0.91 1.28 Partially Very high mechanized		degradable		increasing	
mechanized 13.33 0.91 1.28 Partially Very high mechanized	Very high	Physical Problematic	0.73 (2290 ha mm)	Decreasing	High energy
13.33 0.91 1.28 Partially Very high mechanized		Ith			intensive
13.33 0.91 1.28 Partially Very high mechanized	de	degrades			system
	Very high	Deleterious Problematic	0.59 (2340 ha mm)	Decreasing	High energy
		ct			intensive
					system

tor mai	zemru	njab and r	тагуана					
Crop	Average	state grain	Gross re	turns from	Net retu	urns form	Addi	tional
	produ	activity	grain yi	eld per ha	grain yie	eld (Rs. in	compens	sation for
	(kg	g/ha)	@ MS	P (Rs. in	thou	sands)	maize to e	quate gross
			thou	isand)			returns co	omparable
							to rice on	account of
							savings of	n ecology,
							energy and	d health (in
							Rs./qu	uintals)
	Punjab	Haryana	Punjab	Haryana	Punjab	Haryana	Punjab	Haryana
Rice	4165	3172	77.80	59.25	23.10	4.55	240	80
Maize	3723	3070	68.90	56.79	22.40	10.29	240	80

 Table 4. Comparative return from rice and maize and compensation requirement

 for maize in Punjab and Haryana

* The cost of cultivation is Rs. 54.7 and 46.5 thousands/ha for rice and maize, respectively.

It may also be bore in mind that maize being more an industrial crop even if government procures and stores, with assured supply the grains will be readily procured by the industries. During peak supply, of maize grains, the government can procure maize under MSP and sell during low supply period, when the price rises. Thus, government can sell the procured grains even at higher prices leading to earning to the government. Overall savings to the government with initial spending on infrastructures like dryers, silos etc. will be much higher than current investment on rice-wheat procurement.

7. Suggested intervention

A. Policy intervention

Prevailing policy support favours the rice-wheat cropping system. In recent past, much policy support is being given to prevent burning of rice straw with limited success. Time has come to divert policy support to those cropping systems, which address the challenges of depleting water table, fragile ecology and energy with substantial economic return in a sustainable manner. In this regard, the alternative cropping systems need policy support as follows:

- a. Adoption of district/block approach: Any alternate crop-based diversification should be intensely focused in selected districts with lighter soil facing stiff challenge of ground water depletion in one hand and availability of processing plants/factory on the other. In Punjab, Hoshiyarpur, Ludhiana, Kapurthala and Jalandhar, and in Haryana Hisar, Fatehabad, Sirsa and Karnal may be focused in first phase. Mapping of alternate cropping systems is given in Annexure II in current One District-One Product map maize has little place, which needs to be relooked.
- *b. Creation of infrastructure:* Each crop has enabling technologies in terms of high yielding cultivars (Annexure III-VI) and crop production technologies for Punjab and Haryana. Steady supply of quality seed is foremost important. This calls for

creation of seed hub with adequate linkages with the seed production agencies at various sites. The seed bub may be created in the campus of ICAR-IIMR, Ludhiana to cater the need of all the crops (maize, pigeonpea, soybean and mustard). Seed-to-seed mechanization is well established in maize and soybean, and partially in pigeonpea and mustard. Crop-wise requisite machineries are to be made available to the selected clusters in a subsidized rate. In this context *farm machinery banks or custom-hire centres* need to be established in cluster mode. Rural youths, FPOs, FPCs and SHGs are to be encouraged in this regard. Post harvest handling and storage is of particular concern in case of maize. Dryers of moderate capacity (2-4 t per batch) need to be made available at custom-hire centres (CHC). Post-harvest *storage facilities in the form of silos* may be provided at block level on hiring so that the produce (maize grains) may be stored safely and to avoid distress selling. Towards establishment of CHCs, Sub-Mission on Agricultural Mechanization needs to be roped in. Financial support under MUDRA Bank may be an unique opportunity to support such CHCs, FPOs, FPCs and SHGs.

Enabling seed supply chain: Since maize, pigeonpea, soybean and mustard are not a major crop in this region less focus is being given on cultivation of high yielding cultivars by farmers and the availability of seed is less in the region. For example, in the main maize growing belts of Punjab open pollinated varieties (OPVs) are frequently cultivated to meet the domestic needs. Hence, special attention is to be given to produce and supply quality seeds timely. National Seed Corporation (NSC) and State Seed Corporations (SSC) need to be more actively engaged in seed production of maize and pigeonpea hybrids and varietal seeds of soybean and mustard, which is not receiving much attention of the NSC and SSC at present. Seed production of these crops should be incentivized.

c. *Establishment of processing industries and facilitation of new value chain:* Farmers will never be encouraged unless proper market is created for sale of their produce. Value chain development will play a crucial role in this regard. Maize is extensively used in feed, starch, processed food and in recent past in ethanol

industries. Similarly, pigeonpea needs processing and packaging. Soybean is processed in various forms for food, oil and other products. Mustard processing also needs extensive industrial interventions. Since these crops are not of much relevance in the region in the current scenario, such industries are lacking or running below the capacities. *Tax holidays* to such industries will encourage their establishment and creation of market for these crops. Government-Industry Summits need to highlight these possibilities to encourage private/corporate investment in establishment of such industries in the states. Specialty corn based value chain can create substantial job opportunities and earnings to the farmers. Similarly, apiculture can be integrated with mustard cultivation. FPOs, FPCs and SHGs need to be incentivized to create maize-based processing plants. Initiatives under Skill India with support from MUDRA Bank can be of great help in establishing rural entrepreneurship in this area.

- d. Cross subsidization of alternate cropping system in lieu of ecological benefits: Current policy support is in favour of rice-wheat cropping system with a huge impact on ecology, health and public procurement, storage and distribution. Existing market scenario also supports rice and wheat. Shifting to any other cropping system needs some added tangible benefits to the farmers. Realized market prices of majority of the crops other than rice and wheat are mostly much lower than the MSP. Transfer of price differential directly to the farmers through DBT scheme will provide a level field for the alternate crops. Taking into consideration of the savings on water, energy, ecology and health in one hand and public procurement, storage and distribution on the other, this cross subsidization will cause lesser dent on government overall spending.
- *e. Crop insurance for alternate crops:* The crop insurance policy to be revised for maize, pigeonpea, soybean and mustard based on existing potential of the cultivars.
- f. Introduction of QPM and Soybean in nutri-mission: Nutri-mission of government is contributing immensely addressing malnutrition of the country. Quality Protein Maize (QPM) has proven benefit in terms of nutrition. It has biological value close to milk. ICAR has QPM hybrids with experimental yield potential of 6-7 t/ha for Punjab and Haryana (Annexure III). However, due to lack of market demand QPM hybrids are not gaining popularity among farmers. Introduction of QPM-based products like grits, porridge etc. in the mid-day meal and other mass nutrition programme like Integrated Child Development Services (ICDS) will help in creation of market for QPM. Similarly, soybean products also may be included in nutri-mission to increase the demand of soybean.
- *g. Enabling policy to support bio-ethanol production from maize:* Bio-ethanol production from maize has immense potential to create huge demand for maize to commensurate the ethanol-blending target envisaged by the government. The bio-ethanol industry is to be delinked from physical intervention of excise department.

(20)

h. Funding for research and out-scaling projects of diversification: Though diversification efforts are being made for long, it has made limited success in the states till now. In the state of Punjab, the area under maize has marginally increased from 109 thousand ha in 2018 to 114.6 thousand ha in 2019. In Haryana, the area under maize remained stagnant in recent years at around 6 thousand ha. This indicates that the efforts by the states and ICAR to diversify rice cultivation with maize are giving limited yield which needs to be intensified through policy driven measures. Government funding in research on maize and other proposed crops needs to be augmented to meet the changed scenario. Large-scale demonstration of various cropping system will play an integral role in this regard.

B. Establishment of linkages

Awareness and popularization of alternate cropping system will play an important role. Technology demonstration through Public-Public Partnership involving ICAR institutes, SAUs, state government agencies and KVKs will play a key role in this regard. Linkage of NSC/SSCs with the government departments in terms of technology transfer will play a key role in this regard. Public-Private Partnership in terms of input (seeds, pesticides, growth promoters and biocontrol agents) providers can play a catalytic role in this regard. NGOs working at grass root level will also be an important component in the process. Tapping of CSR funds in crop diversification may also play a key role. Public-Private-Producer Partnership to handhold the FPOs, FPCs and SHGs in alternate value chain can create avenue for entrepreneurship development. Private-Private Partnership enabling contract farming with assured input supply and purchases will catalyze the process of diversification. In the process feed/starch/food processors can join hands with the seed companies to supply right quality seeds, agro-chemical companies for supply of agro-inputs and can directly purchase the farm produce from the farmers field for local consumption. Partnership between starch and feed industry to utilize starch industry byproduct, DDGS will be mutually beneficial. Even cross commodity linkages like soya processor with maize-based feed processor can significantly benefit the whole ecosystem.

Action point	Kesponstbilittes	Timeline
Publicity of advantages of alternate cropping systems over rice-based cropping system	State governments, KVKs, ICAR-IIMR, ICAR-IIPR, ICAR-IISR	First fortnight of May
Inclusion of machinery in maize, soybean and pigeonpea cultivation under subsidy net	State governments, DAC&FW	First fortnight of May
Maize/Soybean/Pigeonpea Divas	State governments with participation of SAU, ICAR-IIMR, ICAR-IIMR, ICAR-IIPR, ICAR-IISR, Farmer, Seed and input companies/dealers/traders, maize using industries (feed, poultry, starch)	By 15 th May
Training to master trainers of state departments	State governments, SAU, ICAR-IIMR, ICAR-IIPR, ICAR-IISR	By 15 th May
Arrangement of seeds (hybrids for maize and pigeonpea, and varieties for soybean)	State governments or as per directives of the government to farmers for direct purchase from market	By 25 th May
Handover of diversification kit (seed, agrochemical and literature) to farmers	State departments	By 30 th May
Arrangement of machinery for sowing for maize	State governments	By 30 th May
Training to block level officials	State governments	By 30 th May
Training to farmers with lecture, literature and input	State departments in association with SAUs and ICAR-IIMR, ICAR-IIPR, ICAR-IISR	By 05 th June
Reimbursement of seed and agrochemicals for maize, pigeonpea and soybean production through DBT	Dedicated online portal of state government	10 days after sowing of crop
Incentives for adoption of alternate cropping system through DBT	Dedicated online portal of state government	By 30 th July
Provision of harvesting equipment for maize and pigeonpea to CHCs	State departments	By 15 August
Seed availability of early season vegetables in peri-urban interface in maize system	State government	By 15th September
Procurement of maize, pigeonpea and soybean from farmers	State Government or tax rebate to industry	After harvesting
Publicity of advantages of mustard cropping	State governments, KVKs, ICAR-DRMR	Second fortnight of September

22

8. Road map for diversification

Action point	Responsibilities	Timeline
Mustard Divas and training to farmers with lecture, literature and input	State governments with participation of SAU, ICAR-DRMR, Farmer, Seed and input companies/dealers/traders, maize using industries (feed, poultry, starch)	By 15 th October
Training to master trainers of state departments	State governments, SAU, ICAR-DRMR	By 15th October
Arrangement of seeds	State governments or as per directives of the government to farmers for direct purchase from market	By 20 th October
Handover of diversification kit (seed, agrochemical and literature) to farmers	State departments	By 20 th October
Training to block level officials	State governments	By 20 th October
Reimbursement of seed and agrochemicals for mustard production through DBT	Dedicated online portal of state government	10 days after sowing of crop
Incentives for adoption of alternate cropping system through DBT	Dedicated online portal of state government	By 30 th November
Felicitation of the farmer/village adopting or official efforts towards successful diversification	State government in District/State level function	Continuous
Establishment of corn/pigeonpea/soybean/mustard villages (in put and marketing support)	CSR funds of the industries working in the states duly facilitated and documented by State Government	Continuous
Establishment of maize/pigeonpea/soybean/mustard famer producer organization/SHGs establishment	State government	Continuous
Establishment of quality protein maize villages for nutritious food, feed and silage	Processing industries with incentives by state government	Continuous
Establishment of baby com, sweet com and pop corn villages establishment	Processor, exporter and FPOs with incentives by state government	Continuous
Promotion of silage from maize for dairy and export	State government through subsidy/incentive on machinery	On demand of farmer/FPO/SHG

Policy Paper

Intermediate measures:

Beside these as immediate steps for sustainability of diversifications following intermediate measures should also be adopted.

- 1. Promotion of contract farming by poultry, feed, seed, starch, oil, dal etc. industries
- 2. CSR fund of industry towards protection of natural resources by alternative crop cultivation
- 3. Reduction of subsidy on water pumping
- 4. Rebate on the taxes for diversified crop purchasing by industry
- 5. Rebate on transport of diversifying crop produces from the production site to utilization plants.
- 6. Imposition of safeguard duty on import of soybean as done for oil palm.
- 7. Cold chain for specialty corn and vegetables
- 8. Export facilitation by establishment of maize, soybean, pigeon pea and mustard export zone
- 9. Tax rebate/subsidized electricity for establishment of maize, soybean, pigeon pea and mustard based agro-industry

Long-term measure

- 1. Steps for phasing out subsidy on water pumping for sustainability
- 2. Phasing out of the incentives towards promotion/purchase of the established diversified crops

9. Mapping of institutes to contribute in cropping system diversification

Maize: Maize research and development in India is being spearheaded by the ICAR-Indian Institute of Maize Research (ICAR-IIMR), which is located at Ludhiana. It has

two of its regional stations in Hyderabad (Winter Nursery Centre) and Begusarai, Bihar (Regional Maize Research & Seed Production Centre). ICAR-IIMR is nodal point for All India Coordinated Research Project (AICRP) on Maize, which has 30 regular and two co-opted centres across the country (Fig. 11). The maize research under AICRP on Maize is being conducted under five zones, *viz.*, Northern Himalayan Zone (Zone I), North Western Zone (Zone II), North Eastern Plain Zone (Zone III), Peninsular Zone (Zone IV) and Central Western Zone (Zone V). Public bred

Fig. 11. Maize research network

hybrids developed and released through AICRP can be obtained from this institute or its AICRP partners (details are given in Annexure III). Punjab Agricultural University, Ludhiana and Regional Research Station of CCS Haryana Agricultural University at Karnal are the two AICRP centres dedicated on maize research and technology dissemination in Punjab and Haryana, respectively.

The most convincing maize-based cropping system based on experimental findings are maize-wheat-mungbean (M-W-Mb) cropping system. Fig. 12 depicts an integrated model linking M-W-Mb cropping system to the institutional support in input supply and training cum awareness and market linkages through various intermediaries. Three most important input supplies will be key in this network – seeds, agro-chemicals and machineries for mechanization of the cropping system. A well established seed hum deep inside the region being supported and coordinated by respective state governments duly complemented with private companies to supply seeds, agro-chemicals and agro-machineries will be key to the success of the model. Custom hiring centres (CHCs) can play a crucial role to provide key implements like bed planter, combined harvesters, shellers dryers etc. in a affordable rates. Governmental schemes on mechanization may support the CHCs in procuring the implements. Input subsidies for seeds and agro-chemicals may be transferred to the farmers adopting the system through direct benefit transfer (DBT) along with incentives to adopt the cropping system. Fig. 12 depicts are supported to the cropping system.

Companies (FPCs), Famers Producer Organizations (FPOs), Self Help Groups (SHGs) and others may act as aggregator to link the farmers to the maize processing companies. Such aggregators may be provided with higher capacity dryers and silos for long-term storage of maize grains. National Rural Livelihood Mission (NRLM) can play a key role in forming FPCs/FPOs/SHGs and supporting the CHCs. Money directly paid to the farmers based on grain moisture standard online by the FPCs/FPOs/SHGs will energise the farmers. The maize processing industries buying quality maize from the FPCs/FPOs/SHGs will pay them premium price as the grains will be

Fig. 12. M-W-Mb cropping system based value chain network

of good quality. The diverse value added products from such processing companies can find place in open market or the FPCs/FPOs/SHGs may buy back the value added products to sell in open market. Say feed industry can supply inputs to dairy and poultry farmers, while the products i.e. milk and egg/chicken may find place in open market or may go back to the FPCs/FPOs/SHGs, who may again act as an aggregator for dairy/poultry farmers and market the value added products. The feed industries can also be linked to the ethanol industry through supply of Dried Distilleries and Grain Soluble (DDGS), a by-product of ethanol production and an ingredient for feed. Such models can bring a much waited revolution in the rural economy, simultaneously addressing the serious problem of ground water depletion, residue burning and other ecological/health consequences.

Pigeonpea: ICAR-Indian Institute of Pulses Research (ICAR-IIPR) is a premier Institute in the country dedicated on pulse research. The institute harbours three AICRPs, *viz.*, AICRP on Chickpea, AICRP on Pigeonpea and AICRP on MULLaRP (Mungbean, Urdbean, Lentil, Lathyrus, Rajmash and Fieldpea). The pulses research network across the country through its headquarter and AICRP centres is given in Fig. 13.

The Institute is mandated with basic, strategic and applied research on major pulse crops. It has now six specialized divisions (Crop Improvement, Plant Biotechnology, Crop Production, Crop Protection, Basic Sciences and Social Sciences) and four Regional Research Centres/Stations (Dharwad, Bhopal, Bikaner and Khordha) to meet

the mandates of the institute. Its key role includes developing technologies and materials towards pulses improvement, production and protection, and giving its fruits to our clientele, *the farmers*, besides tactical linkages and strategic coordination with the network on pulses research programs across the country and the globe. The varietal trials of pigeonpea are carried out by 26 regular and 5 voluntary centers spread over five Agro-climatic Zones of India as given below.

Fig. 13. Pulses research network in the country

- 1. NWPZ: North West Rajasthan, Punjab, Haryana, Delhi, Western Uttar Pradesh.
- 2. NEPZ: Eastern and Central Uttar Pradesh, Bihar, West Bengal, Assam, Jharkhand
- 3. Hilly Zone: Uttarakhand, Nagaland, Tripura

- 4. Central Zone: Gujarat, Maharashtra, Madhya Pradesh, Rajasthan, Chhattisgarh.
- 5. South Zone: Andhra Pradesh, Telangana, Karnataka, Orissa, Tamil Nadu.

The total cadre strength of 107 including a project coordinator, 70 scientists and 36 technical staffs are working under the scheme. The Institution and AICRP on Pigeonpea bred varieties and hybrids which can be obtained from this institute or its AICRP partners (details are given in Annexure IV). Punjab Agricultural University, Ludhiana and CCSHAU, Hisar are the two AICRP centres dedicated on pigeonpea research and technology dissemination in Punjab and Haryana, respectively. The most convincing pulses based cropping system is pigeonpea-wheat-mungbean (P-W-Mb) cropping system. It is similar to M-W-Mb or R-W-Mb except the fact that short duration pigeonpea will replace maize or rice during the *kharif* season. It thus, brings in all the beneficial effect of both the pulses, viz., pigeonpea and mungbean. The Institution and AICRP will support in input supply and training cum awareness and market linkages through various intermediaries. Three most important inputs are needed which include seeds, agro-chemicals and machineries for mechanization of the cropping system. For fulfilling seed need, well established seed hubs at Ludhiana in Punjab, CCSHAU, Hisar, KVK-Bhiwani and KVK-Sirsa are functioning well in addition to breeder seed programme (BSP) on pigeonpea and other pulses. This is supported and coordinated by ICAR-IIPR, Kanpur, its AICRP on Pigeonpea and other crop-based institutes to supply agro-chemicals and agro-machineries will be key to the success of this cropping system. Moreover, custom hiring centres (CHCs) are fully equipped to play a crucial role to provide key implements like bed planter, combined harvesters, pigeonpea strippers, etc. in a affordable rates. Governmental schemes may also support the CHCs in procuring the implements.

In addition, input subsidies for seeds and agro-chemicals may be transferred to the farmers adopting the system through DBT along with incentives to adopt the cropping system. FPCs, FPOs, SHGs and others (Cooperative societies) may act as aggregator to link the farmers to pulses processors. On this account, small scale *dal* mills or IIPR Mini *Dal* Mills can be of immense help to small and marginal farmers including FPCs/FPOs/SHGs supporting the CHCs. Pigeonpea *dal* is not used in the locality. Therefore, the value chain must include fulfilling the demand for the commodity elsewhere in the country. Diverse value added products from such processing locations can find place in open market or the FPCs/FPOs/SHGs may buy back the value added products to market. Such activities can bring additional income in the existing rural economy which could address the serious problem accrued as of now (ground water depletion, residue burning and other ecological/health consequences).

Soybean: ICAR-Indian Institute of Soybean Research (ICAR-IISR) at Indore is conducting and coordinating the soybean research in India and coordinating the

soybean research in India through All India Coordinated Research Project on Soybean (AICRPS). In AICRPS, the country has been divided into 6 zones (Fig 14), *viz.*, Northern Hill Zone, Northern Plain Zone, North Eastern Hill Zone, Eastern Zone, Central Zone and Southern Zone. Twenty one state agricultural universities are main centres and 12 universities / institutes / KVK / NGO / private companies are need based centres for multi-location AICRPS trials. Punjab is included in Northern Plain Zone and in addition to Punjab Agricultural University (PAU), Ludhiana, ICAR-Indian Agricultural Research Institute and G.B.

Pant University of Agriculture and Technology, Pantnagar are other centres located in this zone. Although the potential of soybean crop in Punjab and Haryana has been successfully demonstrated through AICRPS it is still grown in small pockets. Soybean crop can easily fit in soybean-wheat-mungbean cropping system but requires availability of quality seeds, agro-chemicals, machines and support for the sale of crop. List of improved soybean cultivars is given in Annexure V. In one of the projects handled by PAU, Ludhiana for two years soybean crop became popular when its assured procurement by university @ Rs 5000 per quintal was ensured. Seed hub for the crop;

custom hiring centres for BBF, FIRBS, combined harvester; FPOs, FPCs and SHGs for seed availability and popularizing soybean food usages are some of the areas for diversifying cropping system in Punjab and Haryana.

Rapeseed-Mustard: Research and development of rapeseed-mustard in India is spurred by ICAR-Directorate of Rapeseed-Mustard Research, which is located at Bharatpur (Rajasthan). It has one Krishi Vigyan Kendra in Alwar district of Rajasthan. ICAR-DRMR is nodal point for All India Coordinating Research Project on Rapeseed-Mustard (AICRP-RM) which has 22 regular and 13 verification center across 17 states of the country (Fig.15). The

Fig. 15. Rapeseed and mustard research network in the country

rapeseed-mustard research under AICRP is being conducted in 6 zones, viz., Zone-I (Kashmir, Himachal Pradesh), Zone-II (Jammu, Punjab, Haryana, Delhi, some parts of Rajasthan and some parts of U.P.), Zone-III (some parts of Rajasthan, Madhya Pradesh, Bihar, UP, Uttarakhand), Zone-IV (Gujarat, Maharashtra, some parts of Rajasthan), Zone-V (Odisha, West Bengal, Jharkhand, Chhattisgarh, Manipur), Zone-VI (Telangana, Andhra Pradesh, Karnataka). Public sector varieties and hybrids developed and released from AICRP can be obtained from its AICRP partners (details are given in Annexure-VI). PAU, Ludhiana, CCSHAU, Hisar and RRS, Bawal (Rewari) are the three AICRP centres dedicated on rapeseed-mustard research and technology dissemination in Punjab and Haryana. The rapeseed-mustard group of crops can be more remunerative in maize based cropping systems. Two most important input supplies will be quality seeds of varieties/hybrids and machineries, both for sowing and harvesting, for mechanization of the cropping system including R-M as one crop. A mustard seed-hub at RRS, Bawal (Rewari, Haryana) being supported and coordinated by ICAR-DRMR in the region and other crop based institutes duly complemented with private companies to supply agro-chemicals and machineries will be key to the success of the model. CHCs can play a very important role to provide key implements like fertiseed-drill, Combine harvester etc. at affordable rates. Government schemes likes RKVY, SMAM (Sub-Mission on Agricultural Mechanization) etc. may support the CHCs in procuring the implements. Input subsidies for seeds and agro-chemicals may be transferred to the farmers adopting the cropping system through DBT along with incentives to adopt the cropping system. FPCs, FPOs, SHGs and others may act as aggregator to link the farmers to rapeseed-mustard processing industries. The rapeseedmustard processing industries, buying rapeseed-mustard from FPCs/FPOs/SHGs, will pay them premium prices for quality mustard (single low/double low). The oil and seedmeal from such processing companies can find place in open market or the FPCs/FPOs/SHGs may buy back the product and sell in the open market and can fetch premium price since India is deficit in edible oil production by more than 50%. The animal feed industry can be linked to this for rapeseed-mustard seed meal which is very high in good quality protein (30-35%). Such models can bring a much awaited revolution in the rural economy simultaneously addressing the serious problem of ground water depletion, residue burning and nutritional security since rapeseedmustard is high energy crop.

10. Epilogue

Strong policy intervention coupled with public-private partnership can bring perceivable changes in the predominant rice-wheat cropping system in the states of Punjab and Haryana and address the challenge of water crisis in one hand and residue burning on the other. Spread of maize, soybean, pigeonpea and mustard can ensure steady supply of the raw materials to the industry ensuring employment and

entrepreneurship development in the region. Similarly, specialty type and quality produce of these crops also can create enough job opportunities and alternate source of income to the farmers and the rural youth. Policy intervention supporting rice and wheat has brought dramatic changes in the cropping pattern in the states. When the country was in need of food such policies certainly brought the country out of the 'ship-tomouth' situation to self-sufficiency. However, this has caused some near irreversible damage to the whole ecosystem and the economy. The states have become net exporter of precious ground water. Now it is time to look back and take stringent policy decision to support the alternate crops, which can be very potent crops not only to address the economical and environmental issues but overall profitability of the system. In the process, no crop should be seen in isolation but should be viewed from cropping system perspective and system productivity and profitability, where all aspects encompassing water and energy conservation and conservation of nature should be viewed in a holistic manner. In the process ICAR institutes, viz., Indian Institute of Maize Research, Indian Institute of Pulses Research, Indian Institute of Soybean Research and Directorate of Rapeseed and Mustard can provide proven technologies, while the implementation part will have to be in the hands of state governments supported by Department of Agricultural Cooperation and Farmers Welfare, Government of India. The networks of scientists in the state agricultural universities and the Krishi Vigyan Kendras can play a key role in implementing the schemes.

References

- Anonymous. 2019. Commission's order on true-up for FY 2017-18, mid-year performance review for FY 2018-19 and determination of generation tariff for the FY 2019-20. Haryana Electricity Regulatory Commission, BAYS NO. 33-36, SECTOR-4, Panchkula-134112. https://herc.gov.in/writereaddata/orders/o20190307.pdf. Accessed on 08th April, 2021.
- Anonymous. 2021. Businees Standar. 8th March 2021 edition. https://www.businessstandard.com/article/economy-policy/punjab-budget-govt-to-waive-off-loansworth-rs-1-186-cr-of-113k-farmers-121030801227_1.html. Accessed online on 08th April, 2021.
- Bamboriya S.D., Jat S.L., Shreelatha D., Mahala D.M. and Rakshit S. 2020. Mechanized maize production for enhanced productivity and profitability. IIMR Technical Bulletin 2020/1. ICAR-Indian Institute of Maize Research, Ludhiana. p. 38.
- Bhuvaneshwari S., Hettiarachchi H., and Meegoda J. N. 2019. Crop Residue Burning in India: Policy Challenges and Potential Solutions. *International Journal of Environmental Research and Public Health*, 16(5): 832. https://doi.org/10.3390/ ijerph16050832
- CGWB, 2019. National Compilation on Dynamic Ground Water Resources of India, 2017. Department of Water Resources, RD & GR, Government of India.
- Chauhan B.S., Mahajan G., Sardana V., Timsina J. and Jat M.L. 2012. Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities and strategies. *Advances in Agronomy*, 117: 315-369.
- DAC. 2021. Department of Agriculture and Cooperation, Ministry of Agriculture and Farmers Welfare, Government of India, New Delhi.
- Dass S., Jat S.L., Yadav R.K., Kumar A. and Jindal J. 2020. Working group report on promotion of maize cultivation in Haryana. Haryana Kisan & Agricultural Costs and Prices Commission, Government of Haryana, Chandigarh. p 22.
- GoH. 2020. Statistical Abstract of Haryana 2018-19, Department of Economic and Statistical Analysis, Haryana.
- GoI. 2020. Agricultural Statistics at a Glance 2019. Ministry of Agriculture and farmers welfare, Government of India.
- GoP. 2020. Statistical Abstract of Punjab, Economic Advisor to Government, Punjab, Chandigarh.
- Gupta D.K., Bhatia A., Kumar A., Chakrabarti B., Jain N. and Pathak H. 2015. Global warming potential of rice (*Oryza sativa*)–wheat (*Triticum aestivum*) cropping system of the Indo-Gangetic Plains. *Indian Journal of Agricultural Sciences*, 85 (6): 807–816.

- IIMR. 2019. IIMR Annual Report 2019. ICAR-Indian Institute of Maize Research, Ludhiana. p. 177.
- Jat H.S., Sharma P.C., Datta A., Chaudhary M., Kakraliya S.K., Sidhu Y.S., H.S., Gerard B. and Jat M.L. 2019a. Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India. *Nature Scientific Report*, 9, 17929. https://doi.org/10.1038/s41598-019-54086-1
- Jat S.L. Parihar C.M., Singh A.K., Nayak H.S., Meena B.R., Kumar B., Parihar M.D. and Jat M.L. 2019b. Differential response from N sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. *Field Crops Research*, 236(2019):96–110. https://doi.org/10.1016/j.fcr.2019.03.017
- Parihar C.M., Jat S.L., Singh A.K., Kumar B., Yadvinder-Singh, Pradhan S., Pooniya V., Dhauja A., Chaudhary V., Jat M.L., Jat R.K. and Yadav O.P. 2016. Conservation agriculture in irrigated intensive maize-based systems of north-western India: Effects on crop yields, water productivity and economic profitability. *Field Crops Research*, 193:104-116. Doi: doi:10.1016/j.fcr.2016.03.013
- Rakshit S., Ballal C.R., Prasad Y.G., Sekhar J.C., Soujanya L.P., Suby S.B., Jat S.L., Sivakumar G., and Prasad J.V. 2019. Fight against Fall armyworm *Spodoptera frugiperda* (J. E. Smith). IIMR Technical Bulltein 2019/6. ICAR-Indian Institute of Maize Research, Ludhiana, Punjab. p.52.

Annexure I. Area and yield of rice, wheat, maize, pigeonpea, soybean and mustard in Punjab and Haryana

Year		Area ('000 ha))		Yield (kg/ ha)	
	Maize	Pigeonpea	Mustard	Maize	Pigeonpea	Mustard
			Punjab			
2014	126.0	2.6	31.0	3651	923	1248
2015	115.0	2.6	31.0	3687	1000	1348
2016	116.0	5.7	31.7	3836	860	1413
2017	114.0	2.6	30.5	3708	1030	1498
2018	109.0	2.3	30.5	3625	1047	1524
2019	114.6	2.0	31.2	3577.7	1082	1492
			Haryana			
2014	8.0	6.1	493.0	2250	1098	1432
2015	6.0	5.0	505.0	2833	1000	1594
2016	5.0	14.2	510.0	3400	915	1853
2017	6.0	4.1	549.0	3167	1097	2018
2018	5.9	1.9	609.2	2644	1211	2058
2019	6.0			2883		

Source: DACNET

Annexure II. Mapping of alternate cropping systems

Cropping system	Dist	ricts	Specific interventions
	Punjab	Haryana	
Maize-wheat-mungbean with CA	Hoshiyarpur, Ludhiana, Kapurthala and Jalandhar	Hisar, Fatehabad, Sirsa and Karnal	IEC, machineries for crop production and medium capacity dryer through CHC, establishment of storage & processing industry
Maize-wheat-mungbean conventional	Gurdaspur, Pathankot, Hosiarpur, SBS Nagar, Roopnagar	Hisar, Fatehabad, Sirsa and Karnal	IEC, machineries for crop production and medium capacity dryer through CHC, establishment of storage & processing industry
Pigeonpea-wheat- mungbean	Gurdaspur, Pathankot, Hosiarpur, SBS Nagar, Roopnagar	Hisar, Fatehabad, Sirsa and Karnal	IEC, establishment of storage & processing industry
Soybean-wheat- mungbean	Ropar, Hoshiarpur, Ludhiana, Jalandhar	Karnal, Kuruksetra, Jind, Ambala	IEC, establishment of storage & processing industry, Sowing Machine
Maize-mustard- mungbean	Kandi belt	Hisar, Kaithal, Jind, Sonipat, Rohtak, Bhimani, Sirsa and Fatehabad	IEC, machineries for crop production and medium capacity dryer through CHC, establishment of storage & processing industry
Maize-Potato-Water melon	Jalandhar and Bhabhar areas	Kurukshtera, Yamunanagar, Karnal, Sonipat, Ambala, Panchkula, Panipat, Rohtak, Jind and Sirsa	IEC, machineries for crop production and medium capacity dryer through CHC, establishment of storage & processing industry

Note: Provision of Seed Hubs for promising cultivars need to be established for all cropping systems.

Annexure III. LISU OF marke ny	ybrids relea	ze ny drids released for the states of runjad and naryana through ATCRF on Maize		0			
S. Cultivar	Nature of	Developer of the cultivar	Public/ Defended	Release	Maturity	Average Viold (4/ho)	Season
Normal Field Corn	CULUYAI		LIVAUC	ICAI			
1 CP 858	SCH	Charsen Pokphand Seed (India) Pvt. Ltd., Bangalore	Private	2020	Late	9.50	Kharif
2 HT17169	SCH	Hytech Seed India Pvt. Ltd.	Private	2020	Late	10.00	Kharif
3 PMH13	SCH	PAU, Ludhiana	Public	2020	Late	7.00	Kharif
4 CP. 838	SCH	Charsen PokphandSeed (India) Pvt. Ltd., Bangalore	Private	2018	Late	11.20	Rabi
5 PMH11	SCH	PAU, Ludhiana	Public	2018	Late	6.50	Kharif
6 GK 3150	TWC	Ganga Kaveri Seeds Pvt Limited	Private	2017	Late	11.90	Rabi
7 DRONA (KMH-2589)	SCH	Kaveri seed company limited	Private	2017	Late	10.80	Kharif
8 P3544	SCH	Pioneer Hi-Bred Private Ltd.	Private	2017	Late	10.80	Kharif
9 DKC 9126 (MCH 46)	SCH	Monsanto India Ltd., Bangalore	Private	2016	Late	8.90	Kharif
10 Dragon (NMH-1247)	SCH	Nuziveedu Seeds Limited, Hyderabad	Private	2016	Late	9.90	Rabi
11 KMH-7148	SCH	Kaveri Seed Company Limited, Secundrabad	Private	2015	Late	10.10	Rabi
12 KMH-25K45 (BUMPER)	SCH	Kaveri Seed Company Ltd., Andhra Pradesh	Private	2015	Late	9.00	Rabi
13 NMH-1242	SCH	Nuziveedu Seeds Limited	Private	2015	Medium	7.30	Kharif
[4 CoH (M)8 (CMH 08-292)	SCH	TamilnaduAU, Coimbatore	Public	2014	Medium	7.10	Kharif
15 KMH-25K45 (2700) (BUMPER)	SCH	Kaveri Seed Company Ltd., Andhra Pradesh	Private	2014	Late	9.00	Rabi
16 P3522 (X35A019)	SCH	Pioneer Overseas Corporation, Karnatka	Private	2014	Late	9.10	Rabi
17 P 1864 (X8F984)	SCH	Pioneer Overseas Corporation, Karnatka	Private	2014	Early	7.60	Kharif
Quality Protein Maize (QPM)							
18 LQMH-202(LQMH-2)	SCH	ICAR-IIMR, Ludhiana	Public	2020	Medium	7.50	Kharif
19 Pusa HM-4 Improved (AQH-4)	SCH	ICAR-IARI, New Delhi	Public	2017	Medium	6.40	Kharif
Popcorn							
20 GAPCH-21 Mahashweta	SCH	Anand Agricultural University, Anand	Public	2020		3.70	Kharif
21 BPCH-6	SCH	ANGRAU, Hyderabad	Public	2015	Medium	3.20	Kharif
22 DMRHP 1402	SCH	ICAR-Indian Institute of Maize Research, Ludhiana	Public	2018	Early	3.90	Kharif
Sweet Corn							
23 NUZI 260	SCH	Nuziveedu Seeds Limited, Hyderabad	Private	2020	Medium	13.90	Kharif
24 Hi-brix-39 (ADVSW-1)	SCH	Advanta Limited, Hyderabad	Private	2017	Medium	13.80	Kharif
25 Hy-brix 53 (ADVSW-2)	SCH	Advanta Limited, Hyderabad	Private	2017	Medium	13.70	Kharif
26 Central Maize VL Sweet Corn 1	SCH	VPKAS, Almora, Uttarakhand	Public	2016	Medium	10.80	Kharif
27 CANDY (KSCH-333)	SCH	Kaveri Seed Company Limited, Secundrabad	Private	2015	Early	11.90	Kharif
Baby Corn							
28 IMHB 1532	SCH	ICAR-IIMR, Ludhiana	Public	2018	Medium	2.00	Kharif

NUCLER STREET

THE REAL	The second se	ÎR)	C							
	Traits	Indeterminate, semi-spreading, early maturing (135- 140 days), yields about 12-15 q/ha, suitable for micennes-whest cronning system	Indeterminate, Early maturing and semi spreading	Indeterminate, early maturing, semi spreading, suitable for pigeonpea-wheat cropping system	Indeterminate, semi spreading, early maturing, suitable for pigeonpea-wheat cropping system	Tolerant to Phytophthora stem	Determinate, erect and compact, extra early, matures in about 120 days, yields about >10q/ha	2019 (CVRC) Indeterminate, semi spreading, matures in about 145- 150 days, possesses resistant to wilt and sterility mosaic disease. Gives an yield about 15-16 q/ha.	It is an early CGMS based hybrid having the cytoplasm of <i>C. scarabaeoides.</i> It is indeterminate, semi spreading, matures in about 150-155 days. Possesses resistance to Fusarium wilt and has a yield potential of 2.5 tha	It is indeterminate, semi spreading, matures in about 150 days. Possesses resistance to Fusarium wilt and has a yield potential of 2-2.5 <i>U</i> /ha
	Release year	2002 (CVRC)	2006 (SVRC)	2007 (SVRC)	2007 (SVRC)	2008 (SVRC)	2018 (SVRC)	2019 (CVRC)	2019 (CVRC)	2020 (CVRC)
	Zone	Zdwn	Uttarakhand	Punjab	Delhi	NWPZ (State)	Delhi	ZdWN	ZdWN	Zdwn
	Developer of the cultivar	IARI, New Delhi	ICRISAT	PAU,Ludhia na	IARI, New Delhi	G.B.P.U.A.&T,	IARI, Pusa, New Delhi	GBPUA&T Pantnagar	IIPR Kanpur	IIPR Kanpur
2020)	Pedigree	Sel. Of 90306	ICP6 x Pant 2	H89-5XICPL 85024	Sel. 90310 x H 88-45	UPAS120XKPBR 80-2-1	Population improvement approach involving diverse genotypes viz., ICP 85059, ICPL 390, ICPL 267, Manak, H-92-39 and ICP 85024	ICPL 84023 x ICPL 88039	CMS PA 163A x AK 250189R	CMS PA 163A x AK 261322R
Pigeonpea (2010-2020)	Variety	Pusa 992	VLA 1	PAU 881	Pusa 2002	PA291	Pusa Arhar 16 (PADT 16)	Pant Arhar 6 (PA 421)	IPH 15-03 (Hybrid)	IPH 09-5 (Hybrid)
Pige	S. No.	-	2	3	4	5	9	٢	×	6

😪 Annexure V. List of soybean varieties/hybrids released for the states of Punjab and Haryana through AICRP on Soybean (2010-2020).

No.PrivateYear1.SL 525PAU, LudhianaPublic2007121 days2.PS 1347GBPUA&T, Pant NagarPublic2008123 days3.SL 688PAU, LudhianaPublic2008125 days4.SL 744PAU, LudhianaPublic2008125 days5.Pusa 12PAU, LudhianaPublic2012139 days6.SL 958PAU, LudhianaPublic2012139 days7.Pars 204GBPUA&T, Pant NagarPublic2016142 days7.Part Soya 24GBPUA&T, Pant NagarPublic2016142 days8.SL 955PAU, LudhianaPublic2016113 days9.SL 979PAU, LudhianaPublic2017113 days9.SL 979PAU, LudhianaPublic2020126 days9.SL 979PAU, LudhianaPublic2020126 days9.SL 979GBPUA&T, Pant NagarPublic2020126 days9.SL 979PAU, LudhianaPublic2020126 days9.SL 979GBPUA&T, Pant NagarPublic2020126 days9.SL 979GBPUA&T, Pant NagarPublic2020126 days9.SL 979GBPUA&T, Pant NagarPublic2020127 days9.SL 979GBPUA&T, Pant NagarPublic2020127 days9.SL 979GBPUA&T, Pant NagarPublic2020127	s.	S. Name of variety	Developer of the cultivar	Public/	Release	Maturity	Average	Season
SL 525 PAU, Ludhiana Public 2007 PS 1347 GBPUA&T, Pant Nagar Public 2008 PS 1347 GBPUA&T, Pant Nagar Public 2008 SL 688 PAU, Ludhiana Public 2008 SL 688 PAU, Ludhiana Public 2008 SL 744 PAU, Ludhiana Public 2012 Pusa 12 IARI, New Delhi Public 2015 Pusa 12 PAU, Ludhiana Public 2016 SL 958 PAU, Ludhiana Public 2016 Pant Soya 24 GBPUA&T, Pant Nagar Public 2017 SL 955 PAU, Ludhiana Public 2020 SL 979 PAU, Ludhiana Public 2020 SL 979 GBPUA&T, Pant Nagar Public 2020 PAU, Ludhiana Public 2020 2020 PAU, Ludhiana Public 2020 2020 PAU, Start Nagar Public 2020 2020	No.			Private	Year		Yield	
PS 1347 GBPUA&T, Pant Nagar Public 2008 SL 688 PAU, Ludhiana Public 2008 SL 744 PAU, Ludhiana Public 2012 SL 744 PAU, Ludhiana Public 2012 SL 744 PAU, Ludhiana Public 2012 Pusa 12 IARI, New Delhi Public 2015 SL 958 PAU, Ludhiana Public 2016 SL 958 PAU, Ludhiana Public 2016 SL 958 PAU, Ludhiana Public 2016 SL 955 PAU, Ludhiana Public 2016 SL 955 PAU, Ludhiana Public 2020 SL 979 PAU, Ludhiana Public 2020 SL 979 PAU, Ludhiana Public 2020 PAU, Ludhiana Public 2020 2020 PAU, Ludhiana Public 2020 2020 PAU, Ludhiana Public 2020 2020	Γ.	SL 525	PAU, Ludhiana	Public	2007	121 days	2727	Kharif
SL 688 PAU, Ludhiana Public 2008 SL 744 PAU, Ludhiana Public 2012 SL 744 PAU, Ludhiana Public 2012 Pusa 12 IARI, New Delhi Public 2015 SL 958 PAU, Ludhiana Public 2016 SL 958 PAU, Ludhiana Public 2016 Pant Soya 24 GBPUA&T, Pant Nagar Public 2017 SL 955 PAU, Ludhiana Public 2017 SL 955 PAU, Ludhiana Public 2020 SL 979 PAU, Ludhiana Public 2020 SI 979 GBPUA&T, Pant Nagar Public 2020 PS 1572 GBPUA&T, Pant Nagar Public 2020	5	PS 1347	GBPUA&T, Pant Nagar	Public	2008	123 days	2542	Kharif
SL 744 PAU, Ludhiana Public 2012 Pusa 12 IARI, New Delhi Public 2015 SL 958 PAU, Ludhiana Public 2016 SL 958 PAU, Ludhiana Public 2016 SL 958 PAU, Ludhiana Public 2016 Pant Soya 24 GBPUA&T, Pant Nagar Public 2017 SL 955 PAU, Ludhiana Public 2017 SL 954 PAU, Ludhiana Public 2020 SL 979 PAU, Ludhiana Public 2020 PAU, SL 94 PAU, Ludhiana Public 2020 PAU, Ludhiana Public 2020 2020 PS 1572 GBPUA&T, Pant Nagar Public 2020	3.	SL 688	PAU, Ludhiana	Public	2008	125 days	2435	Kharif
Pusa 12 IARI, New Delhi 2015 SL 958 PAU, Ludhiana Public 2016 Pant Soya 24 GBPUA&T, Pant Nagar Public 2016 SL 955 PAU, Ludhiana Public 2017 SL 955 PAU, Ludhiana Public 2017 SL 955 PAU, Ludhiana Public 2020 SL 979 PAU, Ludhiana Public 2020 PS 1572 GBPUA&T, Pant Nagar Public 2020	4.	SL 744	PAU, Ludhiana	Public	2012	139 days	2142	Kharif
SL 958 PAU, Ludhiana Public 2016 Pant Soya 24 GBPUA&T, Pant Nagar Public 2017 SL 955 PAU, Ludhiana Public 2020 SL 979 PAU, Ludhiana Public 2020 PS 1572 GBPUA&T, Pant Nagar Public 2020	5.	Pusa 12	IARI, New Delhi	Public	2015	124-131 days	2286	Kharif
Pant Soya 24GBPUA&T, Pant NagarPublic2017SL 955PAU, LudhianaPublic2020SL 979PAU, LudhianaPublic2020PS 1572GBPUA&T, Pant NagarPublic2020	9.	SL 958	PAU, Ludhiana	Public	2016	142 days	2282	Kharif
SL 955 PAU, Ludhiana Public 2020 SL 979 PAU, Ludhiana Public 2020 PS 1572 GBPUA&T, Pant Nagar Public 2020	7.	Pant Soya 24	GBPUA&T, Pant Nagar	Public	2017	113 days	2560	Kharif
SL 979 PAU, Ludhiana Public 2020 PS 1572 GBPUA&T, Pant Nagar Public 2020	8.	SL 955	PAU, Ludhiana	Public	2020	126 days	2201	Kharif
PS 1572 GBPUA&T, Pant Nagar Public 2020	9.	ST 979	PAU, Ludhiana	Public	2020	127 days	2335	Kharif
	10.	PS 1572	GBPUA&T, Pant Nagar	Public	2020	120 days	1925	Kharif

Annexure VI. List of mustard varieties/hybrids released for the states of Punjab and Haryana through AICRP on Mustard (2010-2020).

Mus	Mustard (2010-2020).								NI NAT
s.	Variety/hybrid	Nature of variety/hybrid	Developer of the cultivar	Public/	Release	Maturity	Average	Season	di k
No.				Private	Year		Yield (t/ha)		and the second
India	Indian mustard								
-	Pusa mustard -26 (NPJ- 113)	Late sown irrigated, tolerant to high temperature at seedling and maturity stage	ICAR-IARI, New Delhi	Public	2010	115-137	1.5-1.9	Rabi	
2	RH 0119	Thermo-tolerance	CCSHAU, Hisar	Public	2010	145-150	1.8-2.0	Rabi	C
3	Pusa Mustard 28 (NPJ 124)	Early sown, irrigated, tolerant to high temperature at seedling and salinity	ICAR-IARI, New Delhi	Public	2011	97-131	1.9-2.1	Rabi	
4	Coral PAC 437 (Hybrid)	Hybrid, tolerant to white rust	Advanta India Limited	Private	2011	130-140	2.0-2.8	Rabi	
5	RLC2	Timely sown irrigated, low enucic acid (< 2%)	PAU, Ludhiana	Public	2011	132-155	2.0-2.3	Rabi	
9	PBR-357	Timely sown irrigated	PAU, Ludhiana	Public	2011	142-149	2.5-2.8	Rabi	
2	RGN-229	Tolerant to high temperature and salinity at seedling stage, timely sown rainfed	ARS, Ganganagar (SKRAU, Bikaner)	Public	2011	140-150	2.2-2.6	Rabi	
×	RH 0406	Tolerant to high temperature and salinity at	CCSHAU, Hisar	Public	2011	136-149	2.1-2.4	Rabi	
		acculling atage							
6	RGN-236	Tolerant to high temperature and salinity at seedling stage, late sown irrigated	ARS, Ganganagar (SKRAU, Bikaner)	Public	2011	126-128	1.5-1.8	Rabi	
10	Pant Rai-19 (PR 2006-1)	Tolerant to high temperature during early stages, suitable for early sowing.	GBPUA&T, Pantnagar	Public	2012	117	2.1	Rabi	
11	Pusa Mustard- 29 (LET-36)	Low erucic acid (<2%)	ICAR-IARI, New Delhi	Public	2013	143	2.2	Rabi	
12	RVM-2	Rainfed as well as irrigated	ZRS, Morena RVSKVV, Gwalior	Public	2013	194-209	1.7	Rabi	
13	Giriraj (DRMRIJ 31)	Timely sown irrigated	ICAR-DRMR, Bharatpur	Public	2013	137-153		Rabi	
14	RH 0725	Timely sown rainfed	CCSHAU, Hisar	Public	2017	141	2.4-2.8	Rabi	
15	CS 2800-1-2-3-5-1 (CS 60)	Tolerant to salinity/alkalinity	ICAR-CSSRI, Kamal	Public	2017	134	1.7-2.2	Rabi	
16	PDZ-1	Quality mustard (00)	ICAR-IARI, New Delhi	Public	2017	142	2.0-2.5	Rabi	
17	DRMR 2017-15 (Radhika)	Late sown, irrigated	ICAR-DRMR, Bharatpur	Public	2020	122-139	1.7-1.8	Rabi	
18	DRMRIC 16-38 (Brijraj)	Late sown, irrigated	ICAR-DRMR, Bharatpur	Public	2020	122-139	1.7-1.8	Rabi	
19	LES 54 (Pusa Mustard 32)	Timely sown irrigated, low enucic acid	ICAR-IARI, New Delhi	Public	2020	142-147	2.6-2.8	Rabi	Р
Gobh	Gobhi Sarson								oli
1	GSC 7	Canola quality	PAU, Ludhiana	Public	2015	154	2.2	Rabi	су
2	AKMS 8141(Him Palam	Canola quality, timely sown irrigated	CSKHPKVV, Palmpur,	Public	2020	155-177	1.8-2.1	Rabi	Pap
	Gobhi Sarson 1		Himachal						per

Glimpses of Alternative Crops

Maize

Maize + Pigeonpea

Pigeonpea

Mungbean

Soybean

Mustard

MOBILE APPS FOR DIVERSIFIABLE CROPS

हर कदम, हर डगर किसानों का हमसफर भारतीय कृषि अनुसंधान परिषद

भाकुंअनुप ICAR

Agresearch with a Buman touch

www.icar.org.in